
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

A hybrid column generation with GRASP and path relinking
for the network load balancing problem

Dorabella Santos a,n, Amaro de Sousa b, Filipe Alvelos c

a Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
b Instituto de Telecomunicações/DETI, Universidade de Aveiro, 3810-193 Aveiro, Portugal
c Centro Algoritmi/Dep. Produção e Sistemas, Universidade do Minho, 4710-057 Braga, Portugal

a r t i c l e i n f o

Available online 18 May 2013

Keywords:
GRASP with path relinking
Column generation
Hybrid meta-heuristics
Network load balancing

a b s t r a c t

In this paper, a hybrid meta-heuristic is proposed which combines the GRASP with path relinking
method and Column Generation. The key idea of this method is to run a GRASP with path relinking
search on a restricted search space, defined by Column Generation, instead of running the search on the
complete search space of the problem. Moreover, column generation is used not only to compute the
initial restricted search space but also to modify it during the whole algorithm. The proposed heuristic is
used to solve the network load balancing problem: given a capacitated telecommunications network
with single path routing and an estimated traffic demand matrix, the network load balancing problem is
the determination of a routing path for each traffic commodity such that the network load balancing is
optimized, i.e., the worst link load is minimized, among all such solutions, the second worst link load is
minimized, and continuing in this way until all link loads are minimized. The computational results
presented in this paper show that, for the network load balancing problem, the proposed heuristic is
effective in obtaining better quality solutions in shorter running times.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Greedy Randomized Adaptive Search Procedure (GRASP) is
a meta-heuristic first introduced in [1] for the set covering
problem. It is a multi-start local search method where, at each
start, a solution is randomly generated (with some greediness) and
local search is applied to it to find a local optimum solution.
During the multiple starts, the best local optimum solution is
saved as the incumbent solution. path relinking (PR), originally
proposed as an intensification method applied to tabu search in
[2], is a method that tries to find better solutions by the
combination of two initial solutions. The common combination
of GRASP with PR is to run PR at the end of each GRASP iteration
between its local optimum solution and one solution randomly
selected from a list of previously found elite solutions (for a good
survey on the many applications where GRASP with path relinking
has been applied, please see [3]).

Usually, GRASP with PR (GRASP+PR) has been proposed to be
applied on the complete search space of the optimization pro-
blems. The motivation is that constraining the search space might
leave out of the search for all (or, at least, some) optimal solutions.

Nevertheless, there is a computational burden on this approach.
The GRASP search takes more computation time per iteration
(since the neighbor set is usually large) and might take a
significant running time in the analysis of bad neighbor solutions
(although, PR alleviates this burden since it is applied to pairs of
already good quality solutions). In this paper, we take a different
approach. The key idea is to apply GRASP+PR on a restricted
search space, instead of the complete search space of the problem.
Constraining the search to a restricted space aims to make the
search more efficient (since the search space is reduced) but this
can only be effective if the considered restricted space keeps the
best solutions. To manage the restricted search space, we use
Column Generation.

Assume that the optimization problem is defined in such a way
that a solution of a problem is a combination of solutions of
smaller sub-problems (SPs). Column generation (CG) is a decom-
position approach, driven by linear programming, which enables
each SP to be tackled by any optimization algorithm. Although the
first proposals have more than 50 years [4,5], CG is still an active
field of research because of two main reasons. First, the availability
of computational tools has turned the implementation of CG based
algorithms more robust, exposing their advantages over other
approaches where no decomposition or less computationally
demanding decomposition methods (such as sub-gradient meth-
ods) are used. Second, CG has been successfully applied on a wide
range of problems, such as the ones mentioned in [6,7].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.05.006

n Corresponding author.
E-mail addresses: dorabella@av.it.pt (D. Santos), asou@ua.pt (A. de Sousa),

falvelos@dps.uminho.pt (F. Alvelos).

Computers & Operations Research 40 (2013) 3147–3158

Author's personal copy

In our approach, the initial restricted search space is composed
by the columns generated by CG solving the linear programming
(LP) relaxation of the original problem. Then, during the GRASP
+PR search, the restricted search space is modified by including
new columns and/or excluding existing columns. The new col-
umns are generated by CG solving a perturbed problem which is
defined based on the current incumbent solution (defined as the
best solution found so far) and on the LP value of the problem
(determined at the beginning when the first search space is
computed). In general, a perturbed problem is defined by adding
some constraints to the original problem in order to either force
and/or prevent some properties exhibited by the current incum-
bent solution. This approach may be seen as a particular case of
the general framework for combining CG and meta-heuristics
entitled SearchCol (meta-heuristic search by Column Generation)
[8] and we apply this approach to the network load balancing
problem.

Consider a capacitated telecommunications network support-
ing a set of commodity demands, with an estimated set of demand
commodities, where each commodity must be supported by the
network through a single routing path. The balancing of the
network traffic load is an important traffic engineering objective
that maximizes the robustness of the network to unpredictable
traffic growth.

The most straightforward way of defining the network load
balancing objective is to minimize the worst link load. If the worst
link load is a, with 0≤a≤1, then all commodity demands can
uniformly grow up to (1−a)/a before the network becomes
saturated and, therefore, the lower the value of a is, the more
robust the network becomes to unpredictable demand growth. In
[9], appropriate mathematical formulations were presented for
this objective function, showing that the case where demand
bifurcation is allowed is easily solved through linear programming
but the single path routing case is NP-hard.

It might happen that there are different solutions with the
same minimum worst link load a (in the general case, there are).
Among such solutions, if the second worst link load is b, with
0≤b≤a, then all commodity demands not routed through the link
with the worst link load can uniformly grow up to (1−b)/b before
the network becomes saturated. Therefore, value b must also be
minimized provided that the minimum worst link load a is
maintained. Generalizing this idea to all other link loads, we reach
a complete definition of the network load balancing objective: to
minimize the worst link load; among all such solutions, to
minimize the second worst link load; and continuing in this way
until all link loads are minimized. This load balancing objective is
related with the concept of lexicographical minimization (as will
be seen in Section 3) and of min–max fairness and general
methods have been addressed in previous works, as in [10,11], to
deal with it. The lexicographical minimization concept has also
been recently applied as a network routing hop minimization
objective, in [12], aiming, in that case, to optimize the delay
suffered in the network by all commodities.

An alternative approach, proposed in [13], to define a load
balancing optimization function (and further exploited in [14]) is
to minimize the sum of all link costs where the cost of a link is an
increasing piecewise linear function of its load. The main merit of
such an approach is that the optimization problem can be defined
by a single integer linear programming model, although the
resulting models are hard to solve through exact methods (in fact,
meta-heuristics are proposed in [13,14] to solve the resulting load
balancing problems). Moreover, such an approach is an approx-
imation of the network load balancing objective. Consider an
example of a network with 5 links with two possible routing
solutions: S1 with link load values 0.7, 0.4, 0.4, 0.4 and 0.3 (sorted
in a non-increasing order), and S2 with link load values 0.5, 0.5,

0.5, 0.5 and 0.4 (also sorted in a non-increasing order). According
to [13], S1 is better than S2 since it has a cost value of 3.57 while S2
has a higher cost value of 3.87. Nevertheless, S2 is better since its
worst link load is 0.5 (it can cope with a demand growth of 100% of
all commodities) while the worst link load of S1 is 0.7 (it can only
cope only with a growth of 42.8% of all commodities).

The network load balancing optimization problem considered
in this paper was also recently addressed in [15,16]. In [15], CG is
used to define the restricted search space but this space is kept
constant while the search is conducted. In that work, GRASP+PR is
also used as the search algorithm but PR is applied only between
the local minimum solution of each GRASP iteration and the
incumbent solution (i.e., no PR elite list is used). That approach
was compared to the equivalent GRASP+PR search applied to the
complete search space of the problem and the computational
results have shown that the restricted search space enabled much
better results. In [16], an extended version of [15] is proposed
where the GRASP+PR is periodically interrupted (periodicity time
is an input parameter) and new columns are inserted in the search
space using CG. That work has shown that the additional columns
either improve the efficiency of the algorithm or, at least, show
similar efficiency in the cases where the previous approach is
already very efficient. The present work further extends the
algorithm presented in [16] by (i) using an elite list where PR is
applied with all its solutions (and not only with the incumbent
solution), (ii) adopting a dynamic criteria to decide when the
GRASP+PR search is interrupted to run CG, (iii) letting the search
space be modified also by the exclusion of columns, and (iv) using
different perturbed problem definitions. The computational results
will show that this approach is much more efficient since, now,
better results are always obtained even for the cases where the
initial approach [15] is already very efficient.

This paper is organized as follows. In Section 2, we present our
general hybrid meta-heuristic for solving any optimization pro-
blem provided that its linear relaxation can be solved through CG.
In Section 3, we define the network load balancing problem and
describe how it can be solved through mathematical program-
ming. In Section 4, we explain how the general hybrid meta-
heuristic is realized to solve the network loading problem. In
Section 5, we describe a set of problem instances and present the
computational results together with their analysis. Finally, in
Section 6, we summarize the main conclusions and identify the
topics for further research.

2. Hybrid column generation with GRASP and path relinking

The key idea of our approach is to run a GRASP+PR search on a
restricted search space defined by CG instead of running GRASP
+PR on the complete search space of the problem. Moreover, CG is
used not only to compute the initial search space but also to
modify it during the whole algorithm. Running the search on a
restricted space aims to make the search more efficient provided
that the restricted space still contains good quality solutions.

At the beginning, the search space is composed by the columns
generated by CG when solving the LP relaxation of the original
problem. Note that, besides defining the initial search space, this
initial CG step also determines the optimal LP value of the original
problem which is used afterwards. During the GRASP+PR search,
the restricted search space is modified by including new columns
and/or excluding existing ones.

The inclusion of new columns is done as follows. First, a
perturbed problem is defined which is based on the current
incumbent solution of GRASP+PR and on the LP value of the
original problem (obtained in the initial CG step). This operation
might generate new columns that are included in the restricted

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583148

Author's personal copy

search space. The perturbed problem is highly dependent on the
targeted optimization problem. In general, a perturbed problem is
defined by adding some constraints to the original problem in
order to either force and/or prevent some properties exhibited by
the current incumbent solution. The aim is that the additional
columns generated by CG, while solving the perturbed problem,
when added to the search space, might produce a new restricted
search space with better quality solutions.

The exclusion of existing columns is done as follows. During the
search, we count the number of times each column is included on
the different local optimum solutions found by GRASP+PR. When
the restricted search space is modified, the columns not present in
any local optimum solution are excluded from the restricted
search space. The motivation is straightforward: if these columns
are not present in any previously computed local optimum
solution, they probably do not produce good quality solutions
and the overall quality of the restricted search space is improved
without them.

We start by presenting in Algorithm 1 the pseudo-code of the
method when no columns are excluded. In this pseudo-code, P is
the original problem, LB is the LP lower bound of P, P' is a
perturbed problem, Ω is a set of columns defining a restricted
search space, Φ is a set of new columns generated by a CG step and
I is the incumbent solution.

Algorithm 1. Pseudo-code of the method without exclusion of
columns.

1: (Φ, LB)←ColumnGeneration(P, {})
2: Ω←Φ
3: while runtimeoMaxTime do
4: I←GRASPwithPR(Ω, Criteria, runtime)
5: P'←Perturbation(I, LB)
6: Φ←ColumnGeneration(P', Ω)
7: Ω←Ω∪Φ
8: end

The algorithm starts by solving the LP relaxation of the original
problem P, in step 1, with procedure ColumnGeneration. This
procedure takes as input problem P and an empty set of columns
and returns the set of generated columns Φ and the LP value of its
solution LB. Then, in step 2, the algorithm sets the restricted search
space Ω as the set of columns Φ.

Afterwards, the algorithm runs the while cycle (steps 3–8) until
a maximum running time is reached (given by parameter Max-
Time). Inside each cycle, the algorithm runs the GRASPwithPR
procedure on the restricted search space defined by Ω until the
Criteria is met (step 4) and returns its incumbent solution I. The
GRASPwithPR procedure also takes the current runtime as an input
parameter, which is used by Criteria to stop the procedure if the
maximum running time, given by MaxTime, is reached. Then, the
algorithm defines a perturbed problem P', in step 5, with proce-
dure Perturbation based on the current incumbent I and the LB
value (previously computed in step 1). The LP relaxation of the
perturbed problem P' is solved in step 6, where the procedure
ColumnGeneration takes as input the set of columns Ω and returns
the set Φ of additional generated columns. Finally, the algorithm
includes in step 7 the additional columns (set Φ) into the restricted
search space Ω before repeating the cycle.

Note that in Algorithm 1, we have also used the set of columns
Ω defining the restricted search space as the set of columns to be
provided as input to CG. To define the method when columns are
excluded, we need to define two additional sets of columns. We
use Θ to define the whole set of columns generated by the
different CG procedures and E to define the set of columns to be

excluded. With this additional notation, Algorithm 2 presents the
pseudo-code of the generic procedure with exclusion of columns.

Algorithm 2. Pseudo-code of the method with exclusion of
columns.

1: (Φ, LB)←ColumnGeneration(P, {})
2: Ω←Φ
3: Θ←Φ
4: while runtimeoMaxTime do
5: (I, E)←GRASPwithPR(Ω, Criteria, runtime)
6: P'←Perturbation(I, LB)
7: Φ←ColumnGeneration(P', Θ)
8: Θ←Θ∪Φ
9: Ω←(Ω∪Φ)−E

10: end

Compared with Algorithm 1, Algorithm 2 has two additional
steps (steps 3 and 8) which always maintain the set Θ with all the
generated columns and this is the set used as input to all CG
procedures (step 7). Moreover, procedure GRASPwithPR also
returns, in step 5, the set E of columns that were not present in
any local optimal solution. Finally, the restricted search space Ω is
modified, in step 9, not only by including the new columns of set Φ
(as in step 7 of Algorithm 1) but also by excluding the columns of
set E.

Note that the inclusion of new columns during the search
enlarges the restricted search space and, therefore, can be seen as
a diversification technique making the search proceed on a larger
space. On the other hand, the exclusion of columns can be seen as
an intensification technique since the restricted search space is
reduced to the columns already used in the local optimum
solutions found on the previous search.

This method is a generic procedure that can be applied to solve
any optimization problem P, provided that the linear relaxation of
P can be solved through CG. To define a heuristic algorithm based
on this method to a particular problem, some of its components
are problem dependent, namely, the Perturbation procedure
(which defines how a perturbed problem P' is set based on an
incumbent I and on the LP relaxation value of P), the Criteria
definition (which states when the GRASP+PR search is interrupted
to enable the modification of the restricted search space) and the
GRASP+PR problem dependent parameters. In the next section, we
define the load balancing optimization problem and then, in
Section 4, we explain how these components are defined for this
particular optimization problem.

3. Network load balancing optimization

Consider a telecommunications network modeled on a graph G
(N,A) where N is the set of network nodes and A is the set of
network links connecting nodes. The link between nodes i∈N and
j∈N is denoted by {i,j} and each link {i,j}∈A has a given capacity c{ij}.
Consider a set of commodities K, where each commodity k∈K is to
be routed through a single path on the network and is character-
ized by its origin node ok∈N, its destination node dk∈N and its
demand bk40.

Let Pk be the set of paths available on graph G between the end
nodes of k∈K and let δpkfijg be a binary parameter that is 1 if link {i,
j}∈A is in the path p∈Pk. To model the optimization problem, we
consider the following decision variables: the binary variables ϕp

k
which are 1 if path p∈Pk is chosen as the routing path of
commodity k∈K; and the real variables μ{ij} accounting for the load
of link {i,j}∈A. The following set of constraints defines the set of

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–3158 3149

Author's personal copy

feasible solutions

∑
p∈Pk

ϕp
k ¼ 1 ∀k∈K ð1Þ

∑
k∈K

∑
p∈Pk

bkδ
pk
fijgϕ

p
k ¼ cfijgμfijg ∀fi; jg∈A ð2Þ

ϕp
k∈f0;1g ; μfijg∈ 0;1½ � ð3Þ

Constraints (1) guarantee that exactly one path of Pk is chosen
for each k∈K, constraints (2) account for the load of each link, and
constraints (3) are the variables domain constraints.

The load balancing optimization problem uses the concept of
lexicographical optimization. Given two vectors a¼(a1, …, am) and
b¼(b1, …, bm), vector a is said to be lexicographically smaller than
vector b if either a1ob1 or if there exists an index l∈{1, …, m−1}
such that ai¼bi for all i≤l and a l+1obl+1. Now consider the vector
of link loads μ¼(μ{ij}: {i,j}∈A) and let [μ] be the vector obtained
from μ by rearranging its elements in a non-increasing order. The
load balancing optimization problem can be defined in a non-
linear manner as

lexmin ½μ�
Subject to
ð1Þ–ð3Þ ð4Þ
where lexmin denotes the lexicographical minimization of [μ],

i.e., finding a vector [μn] which is lexicographically minimal among
all possible vectors [μ].

It is known that the solution of the load balancing optimization
problem can be obtained by solving a sequence of mixed integer
linear programming models. One such method is the conditional
means approach (for details, please see [17,18]). First, we consider
the vector θ of the accumulated elements of [μ]

θ¼ ðθl ¼∑l
t ¼ 1½μ�l : l¼ 1; :::; jAjÞ ð5Þ

where μ½ �l is the lth element of [μ] and θl is the lth element of θ.
Note that the load balancing optimization problem (4) is equiva-
lent (in the sense that the optimal solution set is the same) to

lexmin θ

Subject to
ð1Þ–ð3Þ ð6Þ
Now, considering the additional variables rt for t¼1, …, |A|, and

dtfijg for t¼1, …, |A| and {i,j}∈A, the conditional means approach
states that the optimal value θnl of the lth element of θ can be
obtained by solving the following mixed integer linear program-
ming model:

θnl ¼min lrl þ ∑
fi;jg∈A

dlfijg

 !
ð7Þ

Subject to

ð1Þ–ð3Þ

μfijg≤rt þ dtfijg ∀t∈f1;2; :::; lg; ∀fi; jg∈A ð8Þ

trt þ ∑
fi;jg∈A

dtfijg≤θnt ∀t∈f1;2; :::; l−1g ð9Þ

rt≥0; d
t
fijg≥0 ð10Þ

Note that the set of constraints (9) ensure that, when solving
the optimal value θnl of the lth element of θ, the optimal values θnt
of all previous elements t∈{1,2,…,l−1} are guaranteed. The solution
value θn1 of the first model gives the worst link load μ½ �1. For the
other link loads, the lth worst link value μ½ �l is given by θnl −θ

n

l−1.

The use of CG to solve the LP relaxation of this sequence of
models is straightforward since constraints (1) define a sub-
problem (SP) for each commodity k∈K whose solution is a path.
For this reason, CG is usually named Path Generation when
applied to network routing problems and the columns generated
by CG for the SP associated to commodity k represent paths
between its end nodes ok and dk in graph G. In this case, each SP
is a shortest path problem, which can be easily solved through a
shortest path algorithm (for a good survey on the many network
routing problems solved through CG, please see [19]).

4. Heuristic algorithm

In the network load balancing problem, the restricted search
space Ω is defined by the sets of paths Pk that are possible routing
paths for each commodity k∈K. Therefore, a solution is defined by
selecting a path p∈Pk for each k∈K and its value array [μ] is
computed by rearranging in a non-increasing order the load values
μ{ij} given by constraints (2). The following subsections address
separately how the problem dependent components of the generic
method described in Section 2 were defined to reach a heuristic
algorithm tailored for the network load balancing problem.

4.1. Definition of perturbed problems

Note that, as described in Section 2, a perturbed problem P' is
defined based on an incumbent solution I and on the LP relaxation
value of P. Consider the value of I given by [μ]. In the load
balancing problem, its LP relaxation is not defined by a single
scalar value but, instead, by an array of link loads sorted in a non-
increasing order. Let us denote this array by [η] where η½ �l is its lth
element.

By definition, [η] is a lower bound for the optimal solution of P
in the lexicographical sense, i.e., [η] is lexicographical smaller than
(or equal to) [μ] for any incumbent I. If they are equal, it means
that I is an optimal solution but this is never the case. So, in
general, there is an index δ for which η½ �i¼ μ½ �i for ioδ and
η½ �δo μ½ �δ . In this work, we propose the use of two perturbed
problem, denoted by P1 and P2.

The motivation of P1 is to generate a perturbed problem aiming
to find additional columns that might lower the value μ½ �δ since it
exhibits a gap to its lower bound μ½ �δ . To define P1, we take the
incumbent solution I and we sort the links {i,j}∈A in a non-
increasing order of their load values μ{ij} on I. Then, we compute
the set S containing all links {i,j} of order δ and higher, whose load
values μ{ij} are higher than η½ �δ (remember that δ is first index for
which η½ �δo μ½ �δ). Finally, we define P1 by adding to P the following
constrains: for each path p∈Pk that is in the incumbent solution I
and includes one link {i,j} belonging to S, we add a constraint
forbidding commodity k∈K to use paths that include link {i,j}. The
motivation of perturbed problem P1 is to generate, through CG
applied to P1, additional paths that do not use the links forcing the
value μ½ �δ on the current incumbent solution.

In the case of perturbed problem P2, instead of trying to lower
the value μ½ �δ of the current incumbent solution (the positive gap
between μ½ �δ and η½ �δ does not mean that μ½ �δ is not optimal), we
assume that μ½ �δ is its optimal value and the motivation is to
generate additional columns that might lower the values of μ½ �i for
i4δ. In this case, the perturbed problem P2 consists on solving the
LP relaxation of the original problem P assuming that its optimal
values are the values of the incumbent μ½ �i for i≤δ. To do so, we
compute the values θnl for l≤δ using the relations given by (5) and
we run the conditional means approach (described in Section 4)
starting on the model correspondent to the (δ+1)th value θnδþ1.

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583150

Author's personal copy

4.2. Definition of criteria

Recall from Section 2 that we have to define the Criteria that
determine when each GRASP+PR search run is interrupted to
enable the modification of the restricted search space.

The simplest approach for the definition of the Criteria is to
interrupt the search when there is an improvement on the
incumbent solution I. This is not a good approach, though, because
of two reasons. First, note that the restricted search space can be
modified by including new paths. Since the quality of the new
paths is usually related with the quality of the incumbent solution
(see the discussion on the previous subsection 4.1), then, too short
GRASP+PR search runs might not have enough time to improve
significantly the incumbent solution causing the inclusion of
undesirable paths. Second, the restricted search space can also
be modified by excluding existing paths which is based on the
local minimum solutions found by the search. Therefore (and like
in the previous case), too short GRASP+PR search runs might
compute a very small number of local minimum solutions and
may result in excluding too many existing paths.

In our implementation, we have considered to let the search
run for a number of GRASP+PR iterations, given by a parameter
Iter, after any improvement of the incumbent solution. In our
problem instances, the best performance was obtained when Iter
is around 30 and this is the value set in all runs of the computa-
tional results presented in this paper.

Moreover, since the incumbent value is an array of non-
increasing link load values [μ], and since the first values are more
significant to the objective function (they correspond to the worst
load values), we have additionally considered that the incumbent
solution improves only if its link load array [μ] improves on its
most significant values, i.e., on at least one of the values μ½ �i with i
up to a parameter Iload. In our computational results, we have
assumed Iload¼8 for two reasons. First, the link load values of the
best solutions below the 8th worst load value are usually much
lower than the worst link load value. Second, the number of
commodities not routed through the links with the 8 worst load
values are, in general, a small percentage of the total number of
commodities.

Finally, we have also combined this criterion with the max-
imum runtime of the overall method given by parameter MaxTime
(see Section 2).

In summary, one of the Criteria, named C1, used in our
implementation is to run the GRASP+PR search until

ðCondition 1 and Condition 2Þ or Condition 3 is true

where the three conditions are defined by

Condition 1: the incumbent solution has improved in one of the
worst Iload link loads.
Condition 2: the search is Iter iterations without improving any
of the worst Iload link loads of the incumbent solution.
Condition 3: the overall runtime reached MaxTime.

For reasons that will be clear when discussing the computa-
tional results, we have also used another Criteria, named C2. In this
case, we have a parameter Index and the search stops if the value
μ½ �Index of the incumbent improves. When using C2, each GRASP
+PR search is interrupted when

Condition 3 or Condition 4 is true

where the new Condition 4 is defined by

Condition 4: the incumbent solution has improved its link load
value μ½ �Index.

4.3. Definition of GRASP with path relinking

GRASP is a multi-start local search method first introduced in
[1]. At each start, an initial solution is randomly generated (with
some greediness) and local search is applied to it to find a local
optimum solution. During the multiple starts, the best local
optimum solution is saved as the incumbent solution. At the
end, the incumbent solution is the solution of the search. To
define the GRASP implementation, one needs to define how the
initial solutions are generated and how the neighbors of a solution
are computed on the local search.

In the network load balancing problem, we compute an initial
solution by sorting randomly the set of commodities k∈K and
selecting for each commodity (by the previous order) the path
p∈Pk that, together with the previous selected paths, gives the best
link load array [μ] in the lexicographical sense. In each local search
step, we use a best improvement strategy, i.e., we compute all
neighbor solutions and move to the one that exhibits the best
improvement in the objective function. The set of neighbors of a
given solution is the set of all solutions which are different from
the current one on a single path. Therefore, the total number of
neighbor solutions is given by

∑
k∈K

���Pk

���−1� �

Note that, in the generation of the initial solutions, the original
GRASP strategy [1] states that each path should be randomly
selected among a list of candidate paths that provide the lowest
incremental objective function penalty. Some preliminary tests
have shown that in the network load balancing problem, the
original strategy does not provide additional efficiency and the
randomness provided by the different commodity random orders
is enough to diversify the search over the search space.

Path relinking (PR), originally proposed as an intensification
method applied to tabu search in [2], is a method that tries to find
better solutions by the combination of two initial solutions. In the
network load balancing problem, we select one initial solution as
the starting solution and the other as the target solution and
compute the commodities k∈K whose paths are different between
the starting solution and the target solution. Then, PR is the
iterative process where, at each iteration, we select a commodity
to switch the path of the starting solution by the one of the target
solution. The selected commodity is the one that gives the best
link load array [μ] in the lexicographical sense. The number of
iterations is equal to the number of commodities whose paths are
different between the starting and the target solutions. During the
process, we save the best solution as the result of PR.

We have used an additional feature in our implementation of
PR. At the end, if the best solution is different from the initial
solutions, we apply local search to find a local minimum solution.
Our computational results show that this additional feature
improves the efficiency of the resulting heuristic algorithms.

The common combination of GRASP with PR is to run PR at the
end of each GRASP iteration between the local minimum solution
given by the local search and one solution randomly selected from a
list of previously found elite solutions. The list of elite solutions starts
empty and is updated with the best solutions up to a maximum
number (given by the maximum elite list size, which is a parameter of
the algorithm) and provided that they are not too similar.

Before defining the best GRASP+PR settings for our problem,
we have conducted some preliminary efficiency tests which
showed that:

(i) The use of an elite list does not provide significant improve-
ments when PR is applied only to one randomly selected elite

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–3158 3151

Author's personal copy

solution; in this case, it is enough to apply PR between the
GRASP local minimum solution and the current incumbent
solution (which is equivalent to consider that the elite list
size is 1).

(ii) There is a significant improvement if PR is applied between
the GRASP local minimum solution and each solution from
the set of elite solutions only if the list size is not too large and
the elite solutions are not too similar.

(iii) Forward and backward PR, i.e., PR applied both from the
GRASP local minimum solution to an elite solution and in the
opposite direction, is the best strategy in terms of heuristic
efficiency.

Given these preliminary results, we have considered two
parameters: MaxList is the maximum size of the elite list and
MinDiff is the minimum percentage of commodities whose paths
must be different between two solutions in order to let both
solutions be in the elite list.

Then, our final implementation of GRASP+PR is as follows. At
any time, the solutions included in the elite list are sorted by their
link load arrays [μ] from the best to the worst in the lexicogra-
phical sense. At the end of each GRASP iteration:

1. We apply both forward and backward PR between the local
minimum solution and each solution from the set of elite
solutions. These PR operations generate a set of new solutions
(one for each currently included elite solution).

2. We sort these new solutions by their link load arrays [μ] from
the best to the worst in the lexicographical sense.

3. According to the previous order, for each new solution, we do
the following operations:
3.1 if there is a better solution in the current sorted elite list

and the new solution has a percentage number of different
paths lower than MinDiff, the new solution is discarded;

3.2 otherwise, we insert the new solution in the appropriate
position of the current sorted elite list and we eliminate all
solutions that are worse than the inserted one (in the
lexicographical sense) and that have a percentage number
of different paths lower than MinDiff.

4. We update the elite list with the best MaxList solutions.
5. We update the incumbent solution with the first solution of the

elite list.

Note that in the overall method, as described in Section 2, the
GRASP+PR is run several times. Although not detailed in the
algorithms description of Section 2, we also use the elite list as a
memory mechanism between different GRASP+PR runs by initi-
alizing the elite list of each run with the last elite list of the
previous run. This can be safely done since the solutions contained
in the elite list are always local minimum solutions and, therefore,
cannot contain paths that are excluded from the restricted search
space of the next run.

5. Computational results

This section is divided in the following subsections. Section 5.1
presents the test instances used in the computational results.
Section 5.2 presents the preliminary analysis of the test instances
together with the methodology used for efficiency comparison
among the different algorithm options. Section 5.3 analyzes the
efficiency improvement obtained by GRASP+PR when an elite
list is used. Section 5.4 presents the computational results
together with their analysis for the different alternative designs
of our proposed heuristic method. Finally, Section 5.5 presents
additional computational tests showing that the modification of

the restricted search space, through CG, during the search is
effective in obtaining better solutions in shorter running times.

5.1. Test instances

All algorithms were developed in C++ programming language
and have used the CPLEX 12.1 software package to solve the
restricted master problem of CG. In order to test the different
algorithms of the proposed heuristic, we have defined a set of 24
test instances based on the well-known network topology of the
NSF network with 26 nodes and 42 links.

In all test instances, we have considered that most of the links
have 1 Gbps (¼ 106 Kbps) of capacity but some of them have a
capacity of 10 Gbps (¼ 107 Kbps). Fig. 1 highlights (with lines in
bold) the higher capacity links for the first 12 test instances while
Fig. 2 highlights the higher capacity links for the second 12 test
instances.

In all test instances, we have randomly generated a set of
demand commodities with the aim of emulating different possible
real scenarios. For each test instance, we have used the following
methodology. We start by selecting a node set S with |S| nodes
(when |S|¼26, the set S includes all network nodes and when |S|
o26, the set S is randomly generated with the same probability of
all nodes being included). Then, we randomly select a subset W⊂S
with |W| nodes. We assign a parameter of 3 to the nodes inW and a
parameter of 1 to the nodes in S\W. Finally, for each pair of nodes
{i,j} in S (i∈S and j∈S\{i}), we assume that there is a commodity k
between the two nodes (i.e., ok¼ i and dk¼ j) and we generate an
integer value bk, uniformly distributed between a minimum value
vm and a maximum value vM, and multiply it by the parameters of
i and j to obtain the demand value (in hundreds of Kbps) of
commodity k.

Fig. 1. Network topology for the first 12 test instances.

Fig. 2. Network topology for the second 12 test instances.

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583152

Author's personal copy

Note that when we consider |S|o26, we are assuming that
some network nodes act as transit nodes and, therefore, there are
no commodities going to/coming from them. Moreover, when we
consider |W|40, we are assuming that these nodes serve a larger
number of clients and, therefore, the corresponding commodity
demands are higher, on average, which is accounted for with the
multiplication of the random values by 3 (the parameter value
assigned to these nodes).

The set of parameters used on each test instance is presented in
Table 1 (NSF′ instances are based on the network of Fig. 1 and NSF′′
instances are based on the network of Fig. 2).

5.2. Preliminary analysis and methodology

Before presenting and discussing the computational results of
the different algorithms in the next subsections, we start by
making a first characterization of the different test instances.

First, we have computed the number of paths generated by CG
solving the LP relaxation of the network load balancing problem,
which defines the initial restricted search space. The column “No.
of paths” of Table 2 shows the number of paths generated for each
test instance. We also classify each test instance in terms of
complexity in High (H), when |S|¼26 with a total number of
26�25/2¼325 commodities, and Low (L), when |S|¼20 with a
total number of 20�19/2¼190 commodities (the column “H/L” of
Table 2 shows the classification of each test instance concerning
the instance complexity). An expected relationship which is easily
observed in Table 2 is that the number of paths generated by CG is
much lower for Low test instances than for High test instances.
Nevertheless, dividing for each test instance the number of paths
by the number of commodities, the number of paths per com-
modity (which is around 4, on average) is not too large and this
value is close to the average for all test instances.

Then, we have solved through mathematical programming
(using CPLEX 12.1) the integer problem with the sets Pk given by
the initial restricted search space, i.e., by the set of paths generated
by CG solving the LP relaxation of the integer problem; this is the
Integer Restricted Master Problem (IRMP). This is still a hard
problem to be solved. Therefore, we run each test instance limiting
the conditional means algorithm (see Section 3) to solve up to the

8th worst link load and to a maximum runtime of 6 h. Then, with
such solutions, we have classified each instance in Good (G) if at
least the 3 worst link loads of the IRMP optimal solution are equal
to their LP relaxation values or Bad (B) otherwise. Note that when
a test instance is classified as Good, it means that its initial
restricted search space contains solutions that are optimal at least
for the 3 worst link loads. On the other hand, when a test instance
is classified as Bad, it means that we do not know if the initial
restricted search space contains good quality solutions. Therefore,
the strategy of modifying the restricted search space during the
GRASP+PR search might be potentially more efficient on the
second type of test instances. Column “G/B” of Table 2 shows this
classification for each test instance (a curious fact observed in all
test instances is that the number of worst link loads equal to their
LP relaxation values was never 1 or 2; it was always either zero or
higher than 2).

Since the proposed method is a stochastic process, it gives
different solutions on different runs. In order to generate useful
data for comparison analysis in the follows subsections, we have
adopted the following methodology. Whenever we want to
compare two algorithms, we run both algorithms 10 times for
each test instance and compare the pair of solutions of each run.
Then, we sum the number of times the solution of the second
algorithm is better (in the lexicographical sense) than the solution
of the first algorithm. Finally, we average these numbers over the
set of test instances of interest. In this way, a result higher than
50% shows that the second algorithm is better than the first
algorithm while a result lower than 50% shows that the second
algorithm is worse than the first algorithm.

5.3. GRASP+PR computational results

The aim of this subsection is to present computational results
showing that the use on an elite list in PR effectively improves the
GRASP+PR search efficiency. In the computational results of this
subsection, we have maintained the search space constant during
the whole run. We have run this algorithm with two different PR
settings. In the first setting, we apply PR with parameter
MaxList¼1 (in this case, the parameter MinDiff is meaningless),
which corresponds to the case when PR is applied between the

Table 1
Set of parameters used to generate each test instance.

Instance vm vM |S| |W|

NSF′00 1 300 26 0
NSF′01 1 300 26 0
NSF′02 1 600 26 0
NSF′03 201 400 26 0
NSF′04 1 600 20 0
NSF′05 1 600 20 0
NSF′06 201 400 20 0
NSF′07 201 400 20 0
NSF′08 1 300 26 6
NSF′09 1 300 26 6
NSF′10 1 300 20 6
NSF′11 1 300 20 6

NSF′′00 1 400 26 0
NSF′′01 1 400 26 0
NSF′′02 1 600 26 0
NSF′′03 201 400 26 0
NSF′′04 1 800 20 0
NSF′′05 1 800 20 0
NSF′′06 301 500 20 0
NSF′′07 301 500 20 0
NSF′′08 1 300 26 6
NSF′′09 1 300 26 6
NSF′′10 1 300 20 6
NSF′′11 1 300 20 6

Table 2
Characterization of each test instance.

Instance G/B H/L No. of paths

NSF′00 B H 1245
NSF′01 B H 1043
NSF′02 B H 1221
NSF′03 G H 1240
NSF′04 B L 792
NSF′05 G L 750
NSF′06 B L 899
NSF′07 G L 772
NSF′08 G H 1318
NSF′09 B H 1245
NSF′10 B L 743
NSF′11 B L 681

NSF′′00 G H 904
NSF′′01 B H 938
NSF′′02 B H 1068
NSF′′03 G H 1129
NSF′′04 B L 633
NSF′′05 G L 598
NSF′′06 G L 641
NSF′′07 G L 657
NSF′′08 G H 1128
NSF′′09 B H 1071
NSF′′10 B L 688
NSF′′11 B L 659

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–3158 3153

Author's personal copy

local minimum solution and the incumbent solution (i.e., no elite
list is used). In the second setting, we apply PR with parameters
MaxList¼20 and MinDiff¼30% (see Section 4.3 for the meaning of
these parameters). In all cases, we have run the algorithms with a
MaxTime of 60 s.

Table 3 gives the average results for different instance sets:
“Global” means that the results are averaged over all test instances
and the other lines mean that the results are averaged over all test
instances with the referred classification.

These results show that the use of an elite list improves the
efficiency of the algorithm since, globally, 58.1% of the runs
produce better results. Note that the use of the elite list improves
the performance of all types of instance sets, although the
performance improvement is higher in the Bad test instances,
when compared with the Good test instances, and in the test
instances involving a higher number of commodities (High test
instances).

During all runs, we have also computed the average occupation
(i.e., average number of solutions) kept on the elite list in the
second setting. Although we have used a maximum elite list size of
20, the average occupation of the elite list was between 4 and 5 in
all cases, which shows that the MaxList¼20 did not limit the
number of solutions accepted in the elite list. This algorithm
behavior is also observed in the runs using the restricted search
space modifications (analyzed in the next subsections). Since we
are requiring that the solutions included in the elite list are quite
different (MinDiff¼30%), most of the solutions inserted into the
elite list eliminate other worse solutions from the list because they
are too close to the inserted ones. Therefore, the average occupa-
tion of the list is not too high and the GRASP+PR search is not
penalized (it does not take too much time applying PR to too many
solutions from the elite list).

We have run the algorithm with the values of MaxList¼5, 10
and 15 (maintaining the value of MinDiff¼30%) and the algorithm
showed a similar average performance with MaxList ≥10 and a
worse average performance with MaxList¼5. So, the algorithm
performance is not sensitive to this parameter provided that it is
large enough. We have also run the algorithm with the values of
MinDiff¼10%, 20% and 40% (maintaining the value of MaxList¼20).
The value of MinDiff¼30% provided the best performance showing
that the algorithm is very sensitive to this parameter. For smaller
values of MinDiff, the average occupation of the elite list becomes
larger penalizing the performance of the algorithm due to the time
penalty of applying PR to too many (and too similar) elite
solutions. On the other end, for larger values of MinDiff, the
average occupation of the elite list becomes too small making
the algorithm performance similar to the one with no elite list
(first setting of Table 3).

5.4. Heuristic computational results

The aim of this subsection is to assess the efficiency of the
proposed heuristics when each of the two perturbed problems, P1
and P2 (described in Section 4) is used and in the two possible
alternatives: either with or without exclusion of columns. Since

the efficiency performance was always better when using the elite
list (as illustrated in the previous subsection), in this subsection
we present the results of all algorithms running with the PR
parameter settings of MaxList¼20 and MinDiff¼30%.

Like in the previous subsection, all algorithms were run with a
MaxTime of 60 s. Nevertheless, in the algorithm variants with
search space modification, we account for the runtime the time
spent only in the GRASP+PR search steps (we ignore the time
spent in the CG steps), i.e., the maximum time given to the sum of
all GRASP+PR steps is 60 s. In this subsection, the aim is to assess
the impact on the search efficiency of modifying the restricted
search space without taking into account the time penalty
required to run the additional CG steps.

First, let us address the efficiency performance of the algo-
rithms with the perturbed problem P1 (see Section 4.1) both
without exclusion of paths (Algorithm 1 of Section 2) and with
exclusion of paths (Algorithm 2 of Section 2). In both cases, we
have used Criteria C1. Table 4 shows for each instance set, the
average number of times that the restricted search space was
modified, together with the total number of paths added and
excluded by all modifications averaged by ten runs. Note that the
global number of added paths does not represent a dramatic
increase on the total number of paths of the restricted search
space (when comparing these values with the values of the initial
restricted search space presented in Table 2). Moreover, the
number of excluded paths (in the case with exclusion of paths)
is in the same order of magnitude of the number of added paths
which means that in this case, the total number of paths of the
different restricted search spaces does not vary significantly.

Now, Table 5 shows the efficiency performance of both algo-
rithms when compared with running GRASP+PR with no
restricted search space modifications. These results show a clear
improvement of the efficiency of the algorithms using P1 and a
slightly better performance when exclusion of columns is used
(63.2% against 62.3%). Note that although the algorithms efficiency
improves for all instance sets, the algorithm performs better in the
Good test instances, when compared with the Bad test instances,
and in the test instances involving a lower number of commodities
(Low test instances).

Table 3
GRASP+PR efficiency when the restricted search space is not modified.

Instance sets PR with incumbent (%) PR with elite list (%)

Global 41.9 58.1
B 38.8 61.2
G 47.0 53.0
H 39.0 61.0
L 45.8 54.2

Table 4
Characterization of algorithms with perturbed problem P1.

Instance
sets

P1 without exclusion
of paths

P1 with exclusion of paths

Modifications Added
paths

Modifications Added
paths

Excluded
paths

Global 7.2 171.3 7.1 185.2 160.5
B 6.3 171.3 6.4 183.7 158.2
G 8.6 171.1 8.0 187.4 163.7
H 6.7 255.3 6.2 272.5 200.7
L 7.8 87.3 7.9 98.0 120.2

Table 5
Efficiency performance of algorithms with perturbed problem P1.

Instance sets P1 without exclusion of paths (%) P1 with exclusion of paths (%)

Global 62.3 63.2
B 61.1 61.3
G 63.6 65.2
H 59.1 61.1
L 65.5 65.3

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583154

Author's personal copy

Let us now address the efficiency performance of the algo-
rithms with the perturbed problem P2, once again both without
exclusion of columns (Algorithm 1) and with exclusion of columns
(Algorithm 2). Like in the previous P1 cases, we have used Criteria
C1 in both cases. Table 6 shows for each instance set, the average
number times that the restricted search space was modified,
together with the total number of paths added and excluded by
all modifications averaged by ten runs. When compared with the
P1 case, the number of modifications is similar but there is a huge
difference in terms of the number of added and excluded paths:
the algorithms with P2 add much less paths and exclude much
more paths. This means that in this case, the size of the restricted
search spaces is almost constant throughout the algorithms
execution, when there is no exclusion of paths, and is significantly
reduced throughout the algorithms execution, when there is
exclusion of paths.

Now, Table 7 shows the efficiency performance of both algo-
rithms when compared with running GRASP+PR with no
restricted search space modifications. These results show no
average improvement (50%) of the efficiency of the algorithms
without exclusion of paths and a small global improvement with
exclusion of paths (54.5%). However, with exclusion of paths, the
algorithm based on P2 performs better (56.2%) in the Bad test
instances, when compared with the Good test instances (52.1%).
This is particularly relevant due to the following two reasons. First,
this result is obtained by an algorithm that reduces significantly
the restricted search space throughout its execution (as observed
before). Second, this algorithm performs better in the cases that
the algorithms based on P1 perform worse.

Up to now, and analyzing all results together, we can conclude
that the algorithm based on P1 with exclusion of paths is the best
algorithm. Nevertheless, remember from Section 4.1 that when a
perturbed problem is generated based on an incumbent I with
value given by [μ] and on a lower bound given by [η], there is
always an index δ for which η½ �i¼ μ½ �i for ioδ and η½ �δo μ½ �δ.
Remember also that P1 aims to generate additional paths to lower
the value of μ½ �δ (since it exhibits a gap to its lower bound μ½ �δ) and
P2 assumes that μ½ �δ is optimal and aims to generate additional
paths to lower the values of μ½ �i for i4δ.

So, a potentially more efficient approach is to combine P1 and P2
in the same algorithmwhere P1 is used while μ½ �δ is improving; P2 is
used one time if μ½ �δ does not improve; and, then, no perturbed
problem is used if μ½ �δ never improves again. Since P1 has better
performance on Good test instances and P2 has better performance
on Bad test instances, the aim is to obtain a heuristic algorithm that
combines the good features of both perturbed problems.

The resulting algorithm is as follows (see Algorithms 1 and 2
descriptions in Section 2):

Step 0: the first GRASPwithPR procedure runs with Criteria¼C1;
we set State¼TRUE;

Step 1: if State is TRUE, the Perturbation procedure uses
P1 to generate the perturbed problem and we set
Criteria¼C1 for the next GRASPwithRP procedure; if
State is FALSE, the Perturbation procedure uses P2 to
generate the perturbed model and we set Criteria¼C2
with Index¼δ for the next GRASPwithRP procedure;

Step 2: if μ½ �δ has improved in the GRASPWithPath procedure,
we set State¼TRUE; otherwise, we set State¼FALSE;
we go to Step 1.

Table 8 shows for each instance set, both the characteristics and
the efficiency performance of these algorithms when compared
with running GRASP+PR with no restricted search space modifica-
tions. The algorithms that combine P1 and P2: (i) show a significant
decrease in the number of times the restricted search space is
modified; (ii) have a number of added paths similar to the case
when P1 is used, and (iii) have a number of excluded paths
significantly lower than the case when P1 is used.

Concerning the efficiency performance, these algorithms are far
better than the best of the previous ones. Globally, the algorithm
with exclusion of paths exhibits an efficiency performance of
66.2% against the previous best value of 63.2% of the algorithm
based on P1 with exclusion of paths. Note that this algorithm
performs better in the Bad test instances, when compared with
the Good test instances, and in the test instances involving a
higher number of commodities (High test instances).

5.5. Final computational results

In the runs on the previous subsection, we have also computed
the runtime spent by the algorithms on each CG step (although
not accounted for in the runtime to limit the running time to the

Table 6
Characterization of algorithms with perturbed problem P2.

Instance
sets

P2 without exclusion
of paths

P2 with exclusion of paths

Modifications Added
paths

Modifications Added
paths

Excluded
paths

Global 6.4 10.8 7.4 11.5 391.2
B 5.2 9.9 6.1 10.4 379.6
G 8.0 12.0 9.2 13.2 407.5
H 5.6 12.5 6.9 13.7 480.9
L 7.1 9.0 7.9 9.4 301.6

Table 7
Efficiency performance of algorithms with perturbed problem P2.

Instance sets P2 without exclusion of paths (%) P2 with exclusion of paths (%)

Global 50.0 54.5
B 47.2 56.2
G 55.1 52.1
H 48.2 45.7
L 52.8 63.3

Table 8
Characterization and efficiency performance of the algorithms combining perturbed problems P1 and P2.

Instance Sets P1/2 without exclusion of paths P1/2 with exclusion of paths

Modific. Added paths Improv. (%) Modific. Added paths Excluded paths Improv. (%)

Global 4.9 175.2 61.1 5.0 176.8 94.5 66.2
B 4.4 168.2 61.3 4.4 170.2 90.3 68.2
G 5.6 184.9 60.9 5.8 186.0 100.3 63.1
H 4.8 252.0 65.2 4.8 251.6 121.1 68.4
L 5.2 98.4 56.8 5.1 102.0 67.9 64.0

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–3158 3155

Author's personal copy

MaxTime considered). We have observed that each CG step (which
is run on each restricted search space modification) takes an
average time between 3 and 4 s for the L(ow) complexity instances
and between 6 and 7 s for the H(igh) complexity instances. Even in
the best algorithm where the average number of modifications
was 5.0 (see Table 8), these times represent a running time penalty
(not accounted for in the previous subsection) which is significant
in the considered MaxTime of 60 s.

In this section, the aim is to determine how effective the
modification of the restricted search space is during the search
when compared with maintaining the restricted search space
constant, taking into account the time penalty of the additional
CG steps and giving more time to the algorithms.

We have first run GRASP+PR applied to the restricted search
space given by initial CG and maintaining this search space
constant during the whole run. Then, we have run the best
heuristic algorithm of the previous subsection, which is combining
the perturbed problems P1 and P2 and using the exclusion of

columns. For both algorithms, we have now considered a MaxTime
of 300 s and for the second algorithm the CG step running times
were also included in the runtime computation. Table 9 shows for
each instance set, both the characteristics and the efficiency
performance of the best heuristic algorithm when compared with
running GRASP+PR with no restricted search space modifications.

Comparing these results with the ones of Table 8, we can
conclude that the algorithm efficiency improves even further with
larger running times for all types of test instances. Globally, the
algorithm efficiency has improved from 66.2% (see Table 8) to
70.9% when we run the algorithms for 300 s.

Note that, as pointed out in subsection 5.2, when a test instance is
classified as Bad, it means that we do not know if the initial restricted
search space contains good quality solutions. The proposed algorithm
has its best efficiency performance in the B(ad) test instances (75.0%)
showing that the strategy of modifying the restricted search space
during the GRASP+PR search makes the algorithm more efficient on
this type of instances. Moreover, the proposed heuristic algorithm also
exhibits better performance in H(igh) test instances, which shows that
the strategy of modifying the restricted search space during the GRASP
+PR search is more efficient for larger search spaces making it a valid
method for solving large scale problem instances.

In the next tables (Table 10 for the NSF′ test instances and
Table 11 for the NSF′′ test instances), we present for each test
instance the 8 worst link load values of the LP lower bound of each
test instance (“LP” lines) and the 8 worst link load values of the
best out of ten runs of each algorithm (A is the algorithm without
restricted search space modification and B is the algorithm with
restricted search space modification). For each algorithm, we
present also in these tables the time instant when the best

Table 9
Characterization and efficiency performance of the algorithm combining P1 and P2
with exclusion of columns.

Instance
sets

No. of
modifications

Added
paths

Excluded
paths

Improvement
(%)

Global 6.6 196.1 117.3 70.9
B 5.4 185.7 108.8 75.0
G 8.4 210.7 129.2 64.8
H 6.9 274.1 148.8 73.4
L 6.4 118.1 85.8 68.4

Table 10
LP values and best results for the NSF′ test instances.

Instance Case 1st (%) 2nd (%) 3rd (%) 4th (%) 5th (%) 6th (%) 7th (%) 8th (%) Time

NSF′00 LP 31.71 31.71 31.71 31.71 31.71 31.70 31.70 31.70 –

A 31.75 31.75 31.74 31.73 31.72 31.68 31.67 31.67 137.8
B 31.74 31.72 31.70 31.70 31.70 31.69 31.69 31.69 26.0

NSF′01 LP 32.91 32.91 32.91 32.91 32.87 32.87 32.87 32.86 –

A 32.95 32.95 32.93 32.93 32.92 32.92 32.92 32.88 208.4
B 32.92 32.91 32.91 32.90 32.88 32.88 32.87 32.87 68.1

NSF′02 LP 68.20 68.20 68.20 68.19 68.19 68.19 68.19 67.19 –

A 68.26 68.23 68.21 68.21 68.20 68.17 68.11 67.23 4.0
B 68.21 68.21 68.21 68.19 68.19 68.19 68.16 67.27 20.0

NSF′03 LP 70.02 70.02 70.02 64.23 64.23 64.23 64.22 64.22 –

A 70.02 70.02 70.02 64.65 64.62 64.62 64.56 64.54 145.4
B 70.02 70.02 70.02 64.63 64.47 64.46 64.36 64.30 20.0

NSF′04 LP 37.93 37.93 37.93 37.93 37.93 37.93 37.88 37.51 –

A 37.95 37.95 37.93 37.93 37.91 37.91 37.90 37.51 73.7
B 37.94 37.93 37.93 37.93 37.93 37.92 37.89 37.52 110.5

NSF′05 LP 47.36 47.35 47.35 43.59 43.59 43.04 43.03 43.03 –

A 47.36 47.35 47.35 43.61 43.57 43.26 43.23 43.17 223.1
B 47.36 47.35 47.35 43.60 43.58 43.21 43.18 43.09 63.4

NSF′06 LP 39.23 39.23 39.22 39.22 38.24 38.24 38.24 38.05 –

A 39.37 39.37 39.36 39.23 38.94 38.15 38.07 38.01 286.0
B 39.37 39.37 39.36 39.09 39.07 38.58 38.44 38.41 181.7

NSF′07 LP 49.50 49.50 49.50 44.31 44.31 40.34 40.34 38.38 –

A 49.50 49.50 49.50 44.31 44.31 40.34 40.34 39.15 139.9
B 49.50 49.50 49.50 44.31 44.31 40.34 40.34 38.47 99.2

NSF′08 LP 84.26 84.26 84.25 64.24 64.23 63.46 63.46 63.41 –

A 84.26 84.26 84.25 68.94 68.92 68.80 68.78 67.40 24.1
B 84.26 84.26 84.25 64.63 64.51 64.47 64.44 64.24 49.4

NSF′09 LP 92.33 92.32 92.32 92.32 89.13 89.13 65.13 65.12 –

A 103.41 103.41 103.38 95.82 95.82 91.07 91.07 91.03 233.4
B 103.41 103.41 103.38 95.82 95.82 85.86 85.86 85.85 36.6

NSF′10 LP 78.89 78.88 55.42 55.42 55.42 44.34 44.34 40.54 –

A 78.90 78.87 55.43 55.42 55.41 44.35 44.34 41.58 229.5
B 78.90 78.87 55.42 55.42 55.42 44.34 44.34 43.71 161.3

NSF′11 LP 66.47 66.46 64.19 64.19 64.19 64.19 64.18 62.76 –

A 66.48 66.45 64.59 64.59 63.99 63.93 63.84 63.57 285.2
B 66.48 66.45 64.23 64.23 64.23 64.20 64.05 62.82 136.7

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583156

Author's personal copy

solutions were found. The tables highlight (in bold) the first link
value that makes the solution of one algorithm better (in the
lexicographical sense) than the solution of the other.

Note that, when comparing the solution values of both algorithm
alternatives with the LP lower bound values in Tables 10 and 11, in
general, both solutions are of good quality since they are close to the
lower bound values. The only exception is NSF′09 test instance
whose worst link load lower bound is 92.33% (see Table 10) while
both solutions exhibit 3 link loads above 100% (so far, we are still
not able to compute a feasible solution to this test instance and,
therefore, we do not know if such solution exists).

Comparing the solution values between the two algorithm
alternatives, these results show that, except for the NSF′′07 test
instance, the best solution found by our algorithm is always better
than the one found without restricted search space modifications in
all other 23 test instances (in the NSF′′07 case, the solutions are
equal in the 8 worst link load values). When the first algorithm
provides already a solution with load values matching the link load
lower bounds, our algorithm can still improve some load values on
the higher order links. When the first algorithm provides solutions
with some gap to the link load lower bound values, our algorithm
can usually (but not always) improve the worst link load values.

Concerning the running time to compute the best solutions, our
algorithm exhibits an average time of 87.6 s (out of 300 s) among
all test instances while the algorithm without restricted search
space modifications exhibits an average time of 175.9 s (out of
300 s), which is roughly twice the first value.

In conclusion, the proposed heuristic method is capable of
significantly improving the performance of GRASP with path
relinking by efficiently managing the restricted search space with

column generation based on the combination of both proposed
perturbed problems P1 and P2 and with exclusion of columns. The
computational results show that the improved performance is
both in terms of the quality of the solutions and in terms of the
average time to compute them.

6. Conclusions

In this paper, we have proposed a general heuristic method
which combines the traditional GRASP with path relinking method
with Column Generation. This method can be used to solve any
problem provided that its LP relaxation can be solved through
Column Generation. The key idea of the method is to run a GRASP
with path relinking search on a restricted search space defined by
column generation instead of running on the complete search
space of the problem. Moreover, column generation is used not
only to compute the initial restricted search space but also to
modify it during the whole algorithm.

We have applied this general heuristic method to derive a
heuristic algorithm to solve the network load balancing problem.
Its application was based on two different proposed perturbed
problems. We first assessed the merits of each perturbed problem
in generating additional columns that could make the search more
efficient. Finally, we proposed the combination of both perturbed
problems in a single heuristic algorithm that has successfully
improved the efficiency of the GRASP with path relinking search
in test instances of varying characteristics.

Note that, for large problem instances with huge search spaces,
it is crucial to constraint the search space in order to make the

Table 11
LP values and best results for the NSF” test instances.

Instance Case 1st (%) 2nd (%) 3rd (%) 4th (%) 5th (%) 6th (%) 7th (%) 8th (%) Time

NSF′′00 LP 37.04 37.04 37.04 37.04 37.04 37.04 36.76 36.76 –

A 37.06 37.06 37.04 37.03 37.03 37.02 36.79 36.77 134.0
B 37.05 37.04 37.04 37.04 37.04 37.03 36.84 36.77 23.5

NSF′′01 LP 38.33 38.33 38.33 38.32 38.29 38.29 38.29 38.28 –

A 38.35 38.34 38.34 38.32 38.30 38.30 38.28 38.23 220.9
B 38.34 38.33 38.32 38.32 38.32 38.32 38.29 38.22 76.4

NSF′′02 LP 53.47 53.47 53.47 53.47 53.47 53.47 48.92 48.92 –

A 53.49 53.48 53.47 53.47 53.46 53.45 53.17 51.22 88.8
B 53.48 53.48 53.47 53.47 53.47 53.45 48.94 48.94 71.3

NSF′′03 LP 54.11 54.11 54.11 54.11 54.11 54.11 53.12 53.12 –

A 54.13 54.13 54.12 54.11 54.09 54.08 53.17 53.15 201.9
B 54.12 54.11 54.11 54.11 54.11 54.10 53.31 53.12 149.3

NSF′′04 LP 55.65 55.65 55.65 55.65 45.78 40.01 40.00 38.26 –

A 55.66 55.65 55.65 55.64 55.29 46.50 45.44 45.39 275.3
B 55.65 55.65 55.65 55.65 45.78 44.60 44.49 44.48 285.1

NSF′′05 LP 52.42 52.42 52.41 42.41 42.40 42.41 42.40 42.40 –

A 52.42 52.42 52.41 42.49 42.41 42.41 42.39 42.39 18.8
B 52.42 52.42 52.41 42.48 42.41 42.41 42.38 42.33 90.7

NSF′′06 LP 52.90 52.90 52.90 52.89 48.02 48.02 48.02 45.58 –

A 52.90 52.90 52.90 52.89 48.03 48.02 48.01 45.58 153.7
B 52.90 52.90 52.90 52.89 48.02 48.02 48.02 45.58 13.7

NSF′′07 LP 50.18 50.18 50.18 50.17 49.65 49.64 49.65 49.64 –

A 50.18 50.18 50.18 50.17 49.65 49.65 49.64 49.64 268.4
B 50.18 50.18 50.18 50.17 49.65 49.65 49.64 49.64 56.2

NSF′′08 LP 67.77 67.77 67.76 67.76 66.84 66.83 66.83 57.24 –

A 67.77 67.77 67.76 67.76 66.96 66.90 66.63 63.65 226.3
B 67.77 67.77 67.76 67.76 66.96 66.81 66.72 63.61 16.7

NSF′′09 LP 76.37 76.37 76.37 76.36 66.33 66.33 66.33 58.96 –

A 76.38 76.37 76.37 76.36 76.05 74.73 74.72 74.71 295.9
B 76.38 76.37 76.36 76.36 70.02 69.94 69.92 69.91 241.0

NSF′′10 LP 74.18 74.17 70.50 70.50 66.93 66.93 66.92 66.48 –

A 74.19 74.16 70.50 70.50 66.93 66.93 66.92 66.72 261.8
B 74.19 74.16 70.50 70.50 66.93 66.92 66.92 66.51 95.3

NSF′′11 LP 43.82 43.82 43.81 43.81 43.81 43.81 38.10 38.10 –

A 43.84 43.83 43.82 43.80 43.80 43.79 43.31 41.18 85.6
B 43.83 43.82 43.81 43.81 43.81 43.80 41.83 41.83 11.3

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–3158 3157

Author's personal copy

search efficient. Running the search on a restricted space aims to
improve the search efficiency but the efficiency of the search
depends on the overall quality of the solutions that belong to the
restricted search space. In the case of the network load balancing
problem, we have shown that column generation provides an
efficient method to manage the search space keeping it reasonably
small and improving the quality of its solutions. In general, this is a
promising method in problems whose LP relaxation can be solved
through column generation and with good LP bounds (i.e., the LP
bounds given by the associated decomposition is close to the
optimal solution value). This is the case of the network load
balancing problem, as was already known from [15].

As a final remark, we have previously dealt with the network
load balancing optimization as a traffic engineering objective in
routing cases such as multiple spanning trees based routing
networks [20] and single path routing with path protection [21].
A future line of research is to evaluate how the general heuristic
method proposed here for the simplest case of single path routing
can be generalized to these more complex traffic engineering
variants.

Acknowledgments

The authors wish to thank the reviewers’ comments which let
them improve significantly the final version of this paper. This
work has been conducted under the project PTDC/EIA-EIA/
100645/2008 “SearchCol: Meta-heuristic Search by Column gen-
eration” (funded by FCT). Dorabella Santos was funded by Portu-
guese FCT under post-doc grant SFRH/BPD/41581/2007.

References

[1] Feo T, Resende M. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 1989;8:67–71.

[2] Glover F. Tabu search and adaptive memory programming—advances, appli-
cations and challenges. In: Barr RS, Helgason RV, Kennington JL, editors.
Interfaces in computer science and operations research. Kluwer; 1996. p. 1–75.

[3] Resende M, Ribeiro C. GRASP with path relinking: recent advances and
applications. In: Ibaraki T, Nonobe K, Yagiura M, editors. Metaheuristics:
progress as real problem solvers. Springer; 2005. p. 29–63.

[4] Ford L, Fulkerson D. A suggested computation for maximal multicommodity
network flows. Management Science 1958;5:97–101.

[5] Dantzig G, Wolfe P. Decomposition principle for linear programs. Operations
Research 1960;8:101–11.

[6] Desaulniers G, Desrosiers J, Solomon M, editors. Column Generation, New
York: Springer; 2005.

[7] Lübbecke M, Desrosiers J. Selected topics in column generation. Operations
Research 2005;53:1007–23.

[8] Alvelos F, de Sousa A, Santos D. SearchCol: metaheuristic search by column
generation. In: Blesa M, Blum C, Raidl G, Roli A, Sampels M, editors, Hybrid
metaheuristics. Lecture notes in computer science, vol. 6373; 2010. p. 190–205.

[9] Wang Y, Wang Z. Explicit routing algorithms for internet traffic engineering.
In: Proceedings of 8th international Conference on computer communications
and networks (ICCCN); 1999. p. 582–588.

[10] Georgiadis L, Georgatsos P, Floros K, Sartzetakis S. Lexicographically optimal
balanced networks. IEEE/ACM Transactions on Networking 2002;10
(6):818–29.

[11] Nace D, Pióro M. Max-min fairness and its applications to routing and load-
balancing in communication networks: a tutorial. IEEE Surveys and Tutorials
2008;10(4):5–17.

[12] Gouveia L, Patrício P, de Sousa AF. Lexicographical minimization of routing
hops in telecommunication networks. In: Julia Pahl, Torsten Reiners, Stefan
Voß, editors, Network optimization. Lecture notes in computer science, vol.
6701; 2011. p. 216–229.

[13] Fortz B, Thorup M. Internet traffic engineering by optimizing OSPF weights. In:
Proceedings of 19th IEEE conference on computer communications (INFO-
COM); 2000. pp. 519–528.

[14] Fortz B, Thorup M. Optimizing OSPF/IS-IS weights in a changing world. IEEE
Journal on Selected Areas in Communications 2002;20(4):756–67.

[15] Santos D, de Sousa A, Alvelos F, Pióro M, Link load balancing optimization of
telecommunication networks: A column generation based heuristic approach,
International Telecommunications Network Strategy and Planning Symposium
(NETWORKS), IEEE Xplore 2010. p. 1–6.

[16] Santos D, de Sousa A, Alvelos F, Pióro M. Optimizing network load balancing:
an hybridization approach of metaheuristics with column generation. Tele-
communication Systems, published online 2011:1–10, http://dx.doi.org/
10.1007/s11235-011-9604-3.

[17] Ogryczak W, Śliwiński T. On solving linear programs with the ordered
weighted averaging objective. European Journal of Operational Research
2003;148(1):80–91.

[18] Ogryczak W, Pióro M, Tomaszewski A. Telecommunications network design
and max-min optimization problem. Journal of Telecommunications and
Information Technology 2005;3:43–56.

[19] Pióro M, Medhi D. Routing, flow and capacity design in communication and
computer networks. Morgan Kaufmann; 2004.

[20] Santos D, de Sousa A, Alvelos F, Dzida M, Pióro M. Optimization of link load
balancing in multiple spanning tree routing networks. Telecommunication
Systems 2010;48(1-2):109–24.

[21] de Sousa A, Santos D, Matos P, Madeira J. Load balancing optimization of
capacitated networks with path protection. Electronic Notes in Discrete
Mathematics 2010;36:1249–56.

D. Santos et al. / Computers & Operations Research 40 (2013) 3147–31583158

