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A Passive Optical Network (PON) is a network technology for deploying access networks based on passive
optical components. In a single PON access network, the client terminals are connected to a Central Office
through optical splitters and interconnecting fibers where each splitter splits in equal parts the input
optical signal coming from the Central Office over its different output fibers. In this paper, we consider
PON topology solutions where the splitting ratio and the number of splitting stages are not constrained
to a given target design but, instead, are decided based on the cost of the solutions. We present different
Integer Linear Programming formulations to model this problem and provide computational results
showing that the optimal solutions can be computed for realistic problem instances. In addition, we
describe how the formulations can be adapted for the traditional PON topology approaches and present
computational results showing that significant cost gains are obtained with the unconstrained splitting
stage approach.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In access networks based on passive optical components, a Pas-
sive Optical Network (PON) connects an output port of an OLT
(Optical Line Terminal), located in a Central Office, to a set of ONUs
(Optical Network Units), one for each client (herein, designated as
client terminals). Such connections (from the Central Office to the
client terminals) are based on passive optical components, i.e.,
optical splitters and fibers. When the number of client terminals
is larger than the capacity of a PON, multiple PONs are deployed,
each one corresponding to one output port of the OLT.

In this paper, we address the single PON network design prob-
lem in the context of densely populated urban scenarios. In these
scenarios, client terminals are concentrated on a small number of
locations (i.e., buildings) which enables us to model the problem
with fewer variables and constraints. In the general case, the
length of the path from the Central Office to each client terminal,
and the number of splitters on it, is constrained by the maximum
optical power that can be sent by the Central Office and the power
loss suffered by the optical signal on fibers and splitters. In densely
populated urban scenarios, though, distances between the Central
Office and the client locations are short and such constraints do not
need to be considered. Moreover, network infrastructures, like
ducts or fiber cables, are usually available in these scenarios (or
can be used from other utility entities) which enable us to model
connection costs by a cost per fiber model.

In the single PON network design problem, we have to decide
where to install splitters and how to interconnect all network
elements (Central Office, splitters and client terminals) through
optical fiber connections. Splitters are optical devices that split in
equal parts the optical signal coming from the Central Office over
their output ports in a power of 2; this is the splitting ratio of
the splitter, which can be 1:2, 1:4, 1:8 and so on. There are costs
associated with the different splitter types (defined by their split-
ting ratios) and splitter locations and there are costs associated
with fiber connections which are higher for longer fibers. The
objective is to determine the minimum cost PON configuration.

Current research dedicated to PON network design usually
assumes a PON capacity of 64, i.e., each output port of the OLT
hosted in the Central Office can connect a maximum of 64 client
terminals to the network. Nevertheless, it is foreseen that in the
near future the capacity of the PONs will evolve to 128 or 256
client terminals as pointed out in ITU Standard (2010).

Most of recent works (an overview of these works is presented
in next section) address the multiple PON network design problem
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Fig. 1. Central office, splitter and client locations.

Fig. 2. A single splitting stage solution.
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where a set of clients are to be connected through more than one
PON because the total number of clients is higher than the capacity
of a single PON. This is a very complex optimization problem since
besides the design of each PON, this problem also includes the
clustering of client terminals to PONs. Due to its complexity, the
multiple PON network design problem is tackled with approximate
methods. Such solution techniques are of interest for quickly find-
ing solutions in the evaluation process of many different network
scenarios and for deciding which PONs should be implemented
and which client terminals should be connected to each PON. Nev-
ertheless, for the final network design, exact methods that can find
optimal solutions for each PON are preferable.

In this work, we address the single PON network design case,
i.e., we assume that the clustering of client terminals to PONs
has been previously decided and each PON design must be individ-
ually determined. Unlike most of previous works, we consider a
PON topology where the splitting ratio and the number of splitting
stages are not constrained to any target design but, instead, are
decided by the optimization task based on the minimum cost
objective. Unlike the traditional approaches, where the single
PON network design is easy for real size problem instances, this
is a hard problem as it will be seen in the computational results.

We start by presenting a generic model for the single PON net-
work design problem, which is non-linear. Then, we propose sev-
eral ILP (Integer Linear Programming) models and test them by
solving test instances with up to 256 client terminals (a PON
capacity value which is foreseen in the near future). In the context
of the computational results, we compare the efficiency of the dif-
ferent models and show that the most efficient modeling alterna-
tives are able to solve to optimality all problem instances.

In addition, we describe how the proposed models can be
adapted for the traditional PON topology approaches. We present
computational results that compare the obtained optimal costs
between the different approaches. These cost comparisons show
that significant cost gains are obtained for PONs of larger capacity
with the unconstrained splitting stage approach when compared
with the traditional approaches.

The paper is organized as follows. Section 2 describes the opti-
mization problem and overviews the recent works on PON net-
work design. Section 3 presents the several modeling alternatives
to the problem. Section 4 presents and discusses the problem
instances and the computational results. Finally, Section 5 presents
the conclusions and the issues for future research.
2. Problem description

Consider the example shown in Fig. 1 defining the location of the
Central Office (where the OLT is hosted) and of the client terminals
that must be connected in a total of 64 client terminals (numbers
close to client locations indicate the number of client terminals).
Fig. 1 also shows the potential locations for the splitters.

The simplest possible PON configuration considers a single
splitting stage. In this case, the Central Office is connected to a
splitter and this splitter is connected to the individual client termi-
nals. Since the number of terminals is 64 in our example, the split-
ter must have a splitting ratio of 1:64 (as illustrated in Fig. 2). In
the downstream, the optical signal sent by the Central Office is
split in equal parts by the splitter among all its output ports. This
solution minimizes the cost associated with splitters while penal-
izing the cost associated with fibers. Note that if the number of ter-
minals is lower than 64, but higher than 32, a splitter with splitting
ratio 1:64 is still required although some of its output ports are not
in use.

Some recent works have considered single splitting stage solu-
tions in the design of multiple PONs in the context of greenfield
scenarios, i.e., scenarios where no infrastructure exists and its
deployment costs must be considered in the optimization task.
Approximate solution methods are proposed both in Bley, Ljubic,
and Maurer (2013) and in Li and Chen (2009) where this last work
also considers maximum length constraints to the fiber lengths of
each PON.

A more flexible solution is to consider two splitting stages,
which often arises in practice. In this case, the Central Office is con-
nected to a first stage splitter, then this splitter is connected to dif-
ferent second stage splitters and, finally, these splitters are
connected to the individual client terminals. In Fig. 3, we illustrate
a two splitting stage solution where the splitting ratio is 1:4 in the
first stage and 1:16 in the second stage (note that other splitting
ratios can also be adopted on each stage). As in the previous case,
the optical signal sent by the Central Office must be split in equal
parts by 64 before reaching each client terminal. Nevertheless, in
this case, the split of the optical signal is distributed by the two
splitting stages instead of being done on a single splitting stage
(as in the previous case): it is first split by 4 in the first stage
(the number of terminals served by each of these output connec-
tions is 64/4 = 16) and, then, each of these output signals is split
by 16 in the second stage (the number of terminals served by each
of these output connections is 16/16 = 1).

Note that, in this case, the client terminals in the same location
can be connected to the network through different splitters (in



Fig. 3. A two splitting stage solution. Fig. 4. An unconstrained splitting stage solution.
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Fig. 3, this is the case in two different client locations). When com-
pared with the single splitting case, this solution increases the cost
associated with splitters (there are more splitters in the network)
while decreasing the cost associated with fibers (most of the fibers
are shorter since this solution enables the second stage splitters to
be located closer to the client locations).

Chardy, Costa, Faye, and Trampont (2012) have recently
addressed the design of multiple PONs using two splitting stage
solutions for each PON where the splitting ratio of each stage is
pre-defined. As in our case, they consider densely populated urban
scenarios with existing network infrastructures. They propose an
ILP model with additional strengthening constraints and graph
reduction techniques that can obtain feasible solutions with small
gaps for realistic problem instances. Kim, Lee, and Han (2011) con-
sider the design of PON access networks where the objective is to
minimize the network cost by proper location of the optical
splitters. They formulate the problem as a multi-level capacitated
facility location problem on an underlying tree topology with
non-linear link costs. The single splitting and two splitting stage
variants are addressed with separate formulations for each case.

In our work, we consider a more general approach, which we
name unconstrained splitting stage approach. In this case, we let
the number of splitting stages from the Central Office to the client
terminals to be different for different terminals. As a consequence,
in the same splitting stage the ratio may differ from one splitter to
another. In Fig. 4, we illustrate a possible unconstrained splitting
stage solution. In this case, the clients on the right-hand side of
the figure are connected to the network through two splitting
stages (1:2 in first stage and 1:32 in second stage) while the clients
on the left-hand side of the figure are connected through three
splitting stages (1:2 in first stage, 1:2 in second stage and 1:16 in
third stage). Note, though, that the number of splitting stages
and the splitting ratio of each stage is still such that the optical sig-
nal sent by the Central Office is split by 64 before reaching each cli-
ent terminal. Finally, as in the previous case, we can also have
client locations whose terminals are connected to the network
through different splitters.

The main advantage of the unconstrained splitting stage
approach is to enable more flexibility in the PON topology, aiming
to reach cost savings in the network design solutions. In the com-
putational results, we will show that for PONs of larger capacity,
the cost savings can be significant when compared to the best of
the previous approaches.

The work with a PON design variant similar to ours is the one
proposed in Eira, Pedro, and Pires (2012), which deals with the
design of multiple PONs with unconstrained splitting stages. That
work considers not only equipment and installation costs (CAPEX)
but also network operational costs (OPEX). It proposes an ILP
model based on a complex generalization of the hierarchical con-
centrator location problem. Nevertheless, the reported computa-
tional results show that instances with 100 client terminals and
12 possible splitter locations take almost 40 hours to be solved
by CPLEX and, because of this, the authors also propose an approx-
imate algorithm for the two splitting stage case. As it will be shown
in the computational results, our most efficient ILP models are able
to find optimal integer solutions for PONs with up to 256 client ter-
minals and up to 42 possible splitter locations with much shorter
running times. One important conclusion of the work presented
in Eira et al. (2012) is that, due to the OPEX cost component, opti-
mal solutions always consider a minimum number of PONs (i.e.,
OLT ports) and the number of client terminals assigned to each
PON is closer to its maximum capacity for most of the PONs.

As a final remark, in this section we have considered the differ-
ent PON topology approaches using an example (Fig. 1) where the
Central Office is not a possible splitter location. In the general case,
PON operators might consider that the first stage splitter can be
hosted in the Central Office (directly connected to the output port
of the OLT). This case can be easily considered in our models by
including the Central Office in the set of the potential locations
for the splitters.
3. Problem modeling

In this section, we present several formulations for the single
PON network design problem. This problem is formulated on a net-
work, where the Central Office, the intermediate locations and the
client locations are represented by nodes of the network. The inter-
mediate nodes represent the eligible locations for optical splitters
and, thus, some of them may not be included in the PON. Two mod-
eling alternatives can be chosen for the client terminals: either
each terminal is represented by a node or the terminals sharing
the same location are represented by a single node. Since in den-
sely populated urban areas several client terminals share the same
location (i.e., multiple clients in the same building), we have
adopted the second alternative since it involves fewer nodes and
the resulting models involve fewer variables and constraints.

Note that when the number of client terminals is exactly the
capacity of the PON (which is a power of 2) and since the splitting
ratios of splitters are a power of 2, the number of terminals served
by each fiber connection is always a power of 2. Consider the pre-
vious example of Fig. 4. The connection from the Central Office to
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the first stage splitter serves 64 ¼ 26 client terminals. The connec-
tions from the first stage splitter to the second stage splitters serve
32 ¼ 25 client terminals each (=64/2). Then, the connections from
the 1:2 second stage splitter to the third stage splitters serve
16 ¼ 24 client terminals each (=32/2). Finally, the connections from
all other splitters to clients serve 1 ¼ 20 client terminal each.

In our problem, the number of clients served by each connec-
tion is interpreted as a flow. The single PON network design prob-
lem can be modeled as a single-source/multi-destination network
flow problem with flow constraints and additional constraints on
the intermediate nodes. We consider that the number of client ter-
minals is always equal to the capacity of the PON. If not, a dummy
client location node with the required number of client terminals is
included in the graph with arcs from all intermediate locations and
associated costs equal to zero. With this modeling approach, the
possible flow values of each connection are reduced to a minimum
set composed by all powers of 2 (between 1 and the capacity of the
PON). As it will be seen later on, this approach enables the defini-
tion of efficient ILP models.

In our problem, a PON has to satisfy the following five condi-
tions: (i) it involves exactly one connection outgoing from the Cen-
tral Office and serving NT client terminals (NT is the capacity of the
PON); (ii) there is at most one connection incident on each inter-
mediate node; (iii) each intermediate node hosts at most one split-
ter; (iv) the number of client terminals served by the output
connections of a splitter is equal for all its output connections (a
direct consequence of the split in equal parts of the incoming opti-
cal signal over the output connections) and (v) the number of out-
put connections of each splitter is a power of 2. Before formulating
the problem, we present the notation used in this paper.
NT
 capacity of the PON, NT is a power of 2

0
 node 0 represents the Central Office

S
 set of intermediate nodes

T
 set of client locations

N
 set of all network nodes: N ¼ f0g [ S [ T

A
 set of arcs (i; j) representing pairs of nodes that can have

an optical connection between them: node 0 has only
outgoing arcs to nodes s 2 S and nodes t 2 T have only
incoming arcs from nodes s 2 S
M
 set of all possible number of output connections of
splitters:

M ¼ f2;4;8;16;32;64; . . . ;NTg
Q
 set of all possible flow values on connections from f0g [ S
to S:

Q ¼ f2;4;8;16;32;64; . . . ;NTg;

from node 0 to an element of S the only flow value is NT
and between elements of S the possible values are in
{2,4,8,16,32, . . . , (NT/2)}
ni
 number of client terminals in location i 2 T

cij
 cost of a fiber connection associated with arc (i; j)

bm
 cost of a splitter of type 1:m, with m 2 M

ai
 cost associated with the installation of a splitter in

intermediate node i 2 S
3.1. Generic formulation

We can obtain different formulations by specifying different
sets of linear constraints for the problem described before. We
start with a non-linear flow based model, similar to others used
in the literature, with additional adequate constraints.

For this generic formulation, we consider the following sets of
variables: binary variables uij ¼ 1; ði; jÞ 2 A, which indicate whether
connection (i; j) is used or not; integer variables fij; ði; jÞ 2 A, repre-
senting the flow value of connection (i; j), which is equal to the
number of terminals served by this connection, binary variables
pm

i ¼ 1; i 2 S;m 2 M, which indicate whether a splitter 1:m is
installed on node i or not and the integer variables qi; i 2 S, repre-
senting the flow value on each arc outgoing from intermediate
node i. The model is as follows:

Min
X
i2S

X
m2M

ðai þ bmÞpm
i þ

X
ði;jÞ2A:j2S

cijuij þ
X

ði;jÞ2A:j2T

cijfij ð1Þ

Subject to :X
ð0;jÞ2A:j2S

u0j ¼ 1 ð2Þ
X

ði;jÞ2A:i2S[f0g
uij 6 1 j 2 S ð3Þ

X
m2M

pm
i 6 1 i 2 S ð4Þ

X
ði;jÞ2A:j2S

uij þ
X

ði;jÞ2A:j2T

fij ¼
X
m2M

mpm
i i 2 S ð5Þ

X
ðj;iÞ2A:j2S[f0g

fji ¼
X

ði;jÞ2A:j2S[T

fij i 2 S ð6Þ
X

ði;jÞ2A:i2S

fij ¼ nj j 2 T ð7Þ

f0j ¼ NTu0j ð0; jÞ 2 A : j 2 S ð8Þ
fij ¼ qiuij ði; jÞ 2 A : i; j 2 S ð9Þ
qi 2 f2;4; . . . ; ðNT=2Þg i 2 S ð10Þ
uij 2 f0;1g ði; jÞ 2 A ð11Þ
fij P 0 and integer ði; jÞ 2 A ð12Þ
pm

i 2 f0;1g i 2 S; m 2 M ð13Þ

The objective is to minimize the total cost, which is the sum of the
costs of intermediate nodes, optical splitters and fibre connections.
Constraint (2) guarantees that the solution is connected to the Cen-
tral Office by exactly one connection, whereas constraints (3) ensure
that there is at most one connection ingoing to each intermediate
node. Constraints (4) guarantee that each intermediate node hosts
at most one splitter, whereas constraints (5) ensure that there are
m connections outgoing from the intermediate node i if and only if
this intermediate node hosts a splitter of type 1:m. These m outputs
are either connections from i to other intermediate nodes
P
ði;jÞ2A:j2Suij

� �
or connections to m terminals

P
ði;jÞ2A:j2T fij

� �
. The flow

conservation is ensured by constraints (6). Constraints (7) guarantee
that each terminal is included in the solution. Constraints (8) guar-
antee that the connection outgoing from the Central Office serves
NT terminals, whereas constraints (9) together with (10) ensure that
the flow outgoing from an intermediate node is equally divided in
powers of 2. Furthermore, constraints (5) together with (6), (9)
and (10) guarantee that the connections outgoing from an interme-
diate node are either connections between intermediate nodes or
connections to terminal nodes. Finally, (11)–(13) are the domain
constraints. Constraints (9) are the non-linear constraints and guar-
antee that the flow in connection (i; j) is equal to a power of 2.

3.2. Constructing a linear model

As the previous model shows, with the chosen set of variables it
is far from obvious how to write linear constraints guaranteeing
that the flow value on each arc leaving a splitter is equal to a power
of 2 as well as to guarantee that the flow is equally divided by all
arcs leaving a given splitter. More precisely, this happens for arcs
(i; j) where j R T . We can overcome this difficulty by using discret-
ized binary variables zq

ij ¼ 1; ði; jÞ 2 A : i 2 S [ f0g; j 2 S; q 2 Q ,
indicating whether the flow value on arc (i; j) is equal to q or not
as in Gouveia (1995) (see also Gouveia & Saldanha da Gama
(2006)). For connections between intermediate nodes and terminal
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nodes, we consider the integer variables zij; i 2 S; j 2 T, representing
the number of terminals located in j and connected to i, previously
denoted by fij; i 2 S; j 2 T. The discretized variables are related with
the original variables uij and fij, in the following way:

u0j ¼ zNT
0j ð0; jÞ 2 A : j 2 S ð14:1Þ

uij ¼
X
q2Q

zq
ij ði; jÞ 2 A : i; j 2 S ð14:2Þ

f0j ¼ NTzNT
0j ð0; jÞ 2 A : j 2 S ð15:1Þ

fij ¼
X
q2Q

qzq
ij ði; jÞ 2 A : i; j 2 S ð15:2Þ

fij ¼ zij ði; jÞ 2 A : j 2 T ð15:3Þ

By either adding these equalities or doing the adequate substitu-
tions on the previous model, we obtain a model for the problem
which guarantees that the flow on each connection is a power of 2.
However, we still need to guarantee that the output flow of a splitter
is the same on each outgoing connection. To guarantee this condi-
tion, we consider new binary variables wq

i ; i 2 S; q 2 Q [ f1g, indicat-
ing whether each flow value outgoing from a splitter installed on
node i is equal to q or not, and the following linking constraints:
X

ði;jÞ2A:j2S

zq
ij 6 ðNT=qÞwq

i i 2 S; q 2 Q ð16:1Þ
X

ði;jÞ2A:j2T

zij 6 NTw1
i i 2 S ð16:2Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

zq
ji ¼

X
q2Q[f1g

wq
i i 2 S ð17Þ

Constraints (16.1) and (16.2) match the flow value in variables
w with the flow in variables z. Also, due to constraints (3), (14.1)
and (14.2), the right-hand side of (17) is not greater than 1 and
thus, the flow entering each intermediate node is split in only
one way. Thus (16.1) and (16.2) and (17) ensure the flow values
outgoing from an intermediate node i are equal. Furthermore,
(17) guarantee that if there is a flow entering node i; i 2 S, then
exactly one of the variables wq

i ; q 2 Q [ f1g, will take the value 1.
Moreover, if the flow is null then all variables wq

i ; q 2 Q [ f1g, will
take the value 0. For completeness, we rewrite the model after
these modifications, which we denote by P1A:

Min
X
i2S

X
2M

ðai þ bmÞpm
i þ

X
ði;jÞ2A:j2S

X
q2Q

cijz
q
ij þ

X
ði;jÞ2A:j2T

cilzil ð18Þ

Subject to:
X

ð0;jÞ2A:j2S

zNT
0j ¼ 1 ð19Þ

X
ði;jÞ2A:i2S[f0g

X
q2Q

zq
ij 6 1 j 2 S ð20Þ

X
m2M

pm
i 6 1 i 2 S ð4Þ

X
ði;jÞ2A:j2S

X
q2Q

zq
ij þ

X
ði;jÞ2A:j2T

zij ¼
X
m2M

mpm
i i 2 S ð21Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

qzq
ji ¼

X
ði;jÞ2A:j2S

X
q2Q

qzq
ij þ

X
ði;jÞ2A:j2T

zij i 2 S ð22Þ

X
ði;jÞ2A:i2S

zij ¼ nj j 2 T ð23Þ

X
ði;jÞ2A:j2S

zq
ij 6 ðNT=qÞwq

i i 2 S; q 2 Q ð16:1Þ
X
ði;jÞ2A:j2T

zij 6 NTw1
i i 2 S ð16:2Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

zq
ji ¼

X
q2Q[f1g

wq
i i 2 S ð17Þ

zq
ij 2 f0;1g ði; jÞ 2 A : j 2 S; q 2 Q ð24Þ

zij P 0 and integer ði; jÞ 2 A : j 2 T ð25Þ

pm
i 2 f0;1g i 2 S; m 2 M ð13Þ

wq
i 2 f0;1g i 2 S; q 2 Q [ f1g ð26Þ

The objective function (18) and constraints (19)–(23) are taken
from (1)–(3), (5)–(12) by using the relations (14.1), (14.2), (15.1)–
(15.3) to remove the variables uij and fij. Constraints (8) have
become redundant and are removed from the model, whereas (9)
and (10) are guaranteed by the definition of the new flow variables
together with (16.1), (16.2), (17) and (20), and are also removed.
Finally, (13), (24)–(26) are the domain constraints.

In the next sections, we propose several model enhancements.
In Section 3.3 we derive valid inequalities from a subproblem
defined by (16.1), (24) and (26). Then, in Sections 3.4 and 3.5, the
enhancements are based on disaggregation of variables and con-
straints. In Section 3.4, the variables defined for the optical splitters
are disaggregated by adding information on the value of the outgo-
ing flow; the constraints concerning the splitter output connec-
tions are disaggregated accordingly. In Section 3.5, valid
equalities relating the variables w to the new variables introduced
in the previous subsection are included in the model; these equal-
ities motivate the disaggregation of another set of constraints.

3.3. Model enhancements (Part 1)

One typical way of improving the linear programming (LP)
relaxation of a model is to find substructures in the model for
which valid inequalities are known. In the case of model P1A, we
consider the subproblem defined by constraints (16.1), (24) and
(26). The LP relaxation of such a model can be easily improved
(see, e.g., Gouveia, Moura, & Sousa (2011)) by adding the
constraints:

zq
ij 6 wq

i ði; jÞ 2 A : i; j 2 S; q 2 Q ð27:1Þ

Similarly, the LP relaxation of the system define by constraints
(16.2), (25) and (26) for q ¼ 1, can be improved by adding
constraints

zij 6 njw1
i ði; jÞ 2 A : j 2 T ð27:2Þ

Note that constraints (27.2) can be seen as a disaggregation of con-
straints (16.2) because we obtain (16.2) adding (27.2) for all j 2 T .
Since the inclusion of constraints (27.1), instead of constraints
(16.1), also permits the definition of a valid model with the remain-
ing constraints, we denote by P1B the model P1A with (27.1) replac-
ing (16.1), and with (27.2) replacing (16.2).

We denote by P1AB the model P1A with constraints (27.1) and
(27.2). As mentioned before, constraints (27.2) are a disaggregation
of constraints (16.2). Thus, constraints (27.2) dominate (16.2),
which can be removed from P1AB. However, some preliminary
computational experiments showed that the inclusion of (16.2),
besides (27.2), reduces the CPU time for determining the optimal
integer solutions. Naturally, P1AB can be considered as either
P1A augmented with (27.1) and (27.2) or P1B augmented with
(16.1) and (16.2).
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The following result summarizes the relation between the LP
relaxation of the models presented so far (we denote by PL the LP
relaxation of model P and by v(P) the optimal value of model P).

Result 1� vðP1ALÞ 6 vðP1ABLÞ; vðP1BLÞ 6 vðP1ABLÞ

Note that the above inequalities follow directly from the construc-
tion of the models. The computational results show that for all the
instances tested the inequalities are strict. Also, it is easy to show
that there is no relation between the values v(P1AL) and v(P1BL).
However, for all the tested instances the relation v(P1AL) < v(P1BL)
holds.

The computational results presented in Section 4 will show that
the models proposed until now are extremely time-consuming for
the largest problem instances and, for several of the instances none
of the proposed models was able to determine the optimal integer
solution in six hours of runtime. The computational results will
also show that the Linear Programming bounds are weak. In gen-
eral, P1B generates better LP bounds than P1A and P1AB generates
only slightly better LP bounds than P1B.

3.4. Model enhancements (Part 2)

In order to derive formulations with a stronger linear program-
ming relaxation, we follow a strategy used for strengthening node
degree variables as in Duhamel, Gouveia, Moura, and Souza (2012)
and Gouveia et al. (2011) (see also Gouveia & Moura (2012)) and
disaggregate the variables pm

i . Consider the new variables
pmq

i ¼ 1; i 2 S;m 2 M; q 2 Q [ f1g, which indicate whether a splitter
1:m with output flow value equal to q is installed on node i or not.
Clearly, the pairs ðm; qÞ that are feasible are such that the value mq
does not exceed NT. The former variables defined for optical split-
ters and the new ones are related in the following way:

pm
i ¼

X
q2Q[f1g

pmq
i i 2 S; m 2 M ð28Þ

Using relations (28), we can replace each variable pm
i , in model P1A,

by the right-hand side of (28). The new model has the same LP
relaxation value as the original model P1A since we have only per-
formed variable substitution and for the moment nothing has been
gained from adding more variables. However, the main idea of this
disaggregation is to observe that the output flow values of an opti-
cal splitter must be equal to the flow value on connections outgoing
from this optical splitter (see constraints (30.1) and (30.2) below).
Thus, the constraints concerning the optical splitter output, rewrit-
ten using relations (28),
X

ði;jÞ2A:j2S

X
q2Q

zq
ij þ

X
ði;jÞ2A:j2T

zij ¼
X
m2M

X
q2Q[ 1f g

mpmq
i i 2 S ð29Þ

can be disaggregated into
X

ði;jÞ2A:j2S

zq
ij ¼

X
m2M

mpmq
i i 2 S; q 2 Q ð30:1Þ

and
X

ði;jÞ2A:j2T

zij ¼
X
m2M

mpm1
i i 2 S ð30:2Þ

We can simplify the resulting model by using the following obser-
vations. First, note that, as pointed out before when motivating
(30.1) and (30.2), we obtain (29) after adding (30.1) for all q and
then adding the result to (30.2). Thus, constraints (29) can be
removed from the model. We denote by P2A the model obtained
by using relations (28) to replace each variable pm

i , and adding
constraints (30.1) and (30.2) and removing constraints (29). For
completeness, we write next the resulting P2A after these
modifications:
Min
X
i2S

X
m2M

X
q2Q[f1g

ðai þ bmÞpmq
i þ

X
ði;jÞ2A:j2S

X
q2Q

cijz
q
ij

þ
X

ði;jÞ2A:j2T

cilzil ð31Þ

Subject to:
X

ð0;jÞ2A:j2S

zNT
0j ¼ 1 ð19Þ

X
ði;jÞ2A:i2S[f0g

X
q2Q

zq
ij 6 1 j 2 S ð20Þ

X
m2M

X
q2Q[f1g

pmq
i 6 1 i 2 S ð32Þ

X
ði;jÞ2A:j2S

zq
ij ¼

X
m2M

mpmq
i i 2 S; q 2 Q ð30:1Þ

X
ði;jÞ2A:j2T

zij ¼
X
m2M

mpm1
i i 2 S ð30:2Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

qzq
ji ¼

X
ði;jÞ2A:j2S

X
q2Q

qzq
ij þ

X
ði;jÞ2A:j2T

zij i 2 S

ð22Þ
X

ði;jÞ2A:i2S

zij ¼ nj j 2 T ð23Þ

X
ði;jÞ2A:j2S

zq
ij 6 ðNT=qÞwq

i i 2 S; q 2 Q ð16:1Þ

X
ði;jÞ2A:j2T

zij 6 NTw1
i i 2 S ð16:2Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

zq
ji ¼

X
q2Q[f1g

wq
i i 2 S ð17Þ

zq
ij 2 f0;1g ði; jÞ 2 A : j 2 S; q 2 Q ð24Þ

zij P 0 and integer ði; jÞ 2 A : j 2 T ð25Þ

pmq
i 2 f0;1g i 2 S; m 2 M; q 2 Q [ f1g ð33Þ

wq
i 2 f0;1g i 2 S; q 2 Q [ f1g ð26Þ

The objective function (31) and constraints (32) are obtained by
applying relations (28) to (18) and (4), respectively. In addition to
(24)–(26), (33) are domain constraints.

Similarly to what has been described in Section 3.3, in the con-
text of model P1A, we obtain a second model, denoted by P2B, by
replacing, in P2A, constraints (16.1) and (16.2) by (27.1) and (27.2)
and a third model, denoted by P2AB, by augmenting P2A with con-
straints (27.1) and (27.2). The following results (Result 2 and Result
3) update the relation between the LP relaxation of the models
presented so far (as before, the inequalities follow from the
construction of the models).

Result 2� vðP2ALÞ 6 vðP2ABLÞ; vðP2BLÞ 6 vðP2ABLÞ

The computational results show that for some instances the
inequalities are strict. It is easy to show that there is no relation
between the values vðP2ALÞ and v (P2BL). However, in our computa-
tions, the relation v(P2AL) < v(P2BL) holds.

Result 3
� vðP2ALÞP vðP1ALÞ; vðP2BLÞP vðP1BLÞ; vðP2ABLÞP vðP1ABLÞ
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The computational results show that for some instances the second
and third inequalities are strict. For the first inequality, all instances
tested provided the same bound and, thus, it is still open whether
equality holds or there are instances for which strict inequality
holds.

The computational results presented in Section 4 show the
advantages of the disaggregation described in this subsection,
namely the reductions in CPU times required to obtain the optimal
integer solutions. However, these CPU times are still large for the
largest instances. Furthermore, for several of the instances tested
none of the proposed models so far has been able to determine
the optimal integer solution within six hours of runtime. This has
motivated the disaggregation described next.

3.5. Model enhancements (Part 3)

In the previous sections, the decision variables originally associ-
ated with the optical splitters have been disaggregated. The new
variables consider information not only about the optical splitter
type but also about the optical splitter output flow. However, the
models also involve the binary variables wq

i ; i 2 S; q 2 Q [ f1g, indi-
cating whether each flow value outgoing from a splitter installed
on node i is equal to q. For the moment, no constraints linking
the two sets of variables have been included. In this section we
introduce constraints linking these two sets of variables and
exploit them to derive new models.

Consider a node i; i 2 S. If the flow value outgoing from a splitter
installed on this node is equal to q, q 2 Q , then we must have
wq

i ¼ 1 and pmq
i ¼ 1, for exactly one m in M. On the other hand, if

there is no optical splitter installed on this node whose output
flows are equal to q; q 2 Q , then

P
m2Mpmq

i ¼ 0 and wq
i ¼ 0.

Thus, the following equalities are valid:

wq
i ¼

X
m2M

pmq
i i 2 S; q 2 Q [ f1g ð34Þ

These equalities are not satisfied by the solutions of P2AL, P2BL and
P2ABL(this is easy to establish). The computational results reported
in Section 4 will show that the inclusion of (34) in P2B improves sig-
nificantly the lower bounds provided by P2BL. Using relations (34),
we can replace each variable wq

i in the model P2A by the right-hand
side of (34), and obtain the following model:

Min
X
i2S

X
m2M

X
q2Q[ 1f g

ai þ bmð Þpmq
i þ

X
ði;jÞ2A:j2S

X
q2Q

cijz
q
ij

þ
X

ði;jÞ2A:j2T

cilzil ð31Þ

Subject to:
X

ð0;jÞ2A:j2S

zNT
0j ¼ 1 ð19Þ

X
ði;jÞ2A:i2S[ 0f g

X
q2Q

zq
ij 6 1 j 2 S ð20Þ

X
m2M

X
q2Q[f1g

pmq
i 6 1 i 2 S ð32Þ

X
ði;jÞ2A:j2S

zq
ij ¼

X
m2M

mpmq
i i 2 S; q 2 Q ð30:1Þ

X
ði;jÞ2A:j2T

zij ¼
X
m2M

mpm1
i i 2 S ð30:2Þ

X
ðj;iÞ2A:j2S[ 0f g

X
q2Q

qzq
ji ¼

X
ði;jÞ2A:j2S

X
q2Q

qzq
ij þ

X
ði;jÞ2A:j2T

zij i 2 S ð22Þ
X
ði;jÞ2A:i2S

zij ¼ nj j 2 T ð23Þ

X
ði;jÞ2A:j2S

zq
ij 6

X
m2M

ðNT=qÞpmq
i i 2 S; q 2 Q ð35:1Þ

X
ði;jÞ2A:j2T

zij 6
X
m2M

NTpm1
i i 2 S ð35:2Þ

X
ðj;iÞ2A:j2S[f0g

X
q2Q

zq
ji ¼

X
m2M

X
q2Q[f1g

pmq
i i 2 S ð36Þ

zq
ij 2 f0;1g ði; jÞ 2 A : j 2 S; q 2 Q ð24Þ

zij P 0 and integer ði; jÞ 2 A : j 2 T ð25Þ

pmq
i 2 f0;1g i 2 S; m 2 M; q 2 Q [ f1g ð33Þ

Constraints (35.1), (35.2) and (36) are obtained by applying (34)
to constraints (16.1), (16.2) and (17). Note that either constraints
(20) or (32) can be removed from the model, since one of these sets
becomes redundant, due to constraints (36). We will remove con-
straints (20) since they involve more variables than (32). Note also
that (35.1) and (35.2) can be removed since they are dominated by
constraints (30.1) and (30.2), because the coefficients of variables
pmq

i in the right hand side of constraints (35.1) and (35.2) are
greater or equal than the coefficients of the same variables in the
right-hand side of (30.1) and (30.2).

Constraints (34) also permit us to disaggregate constraints (36)
into:
X

ðj;iÞ2A:j2S[f0g
zq

ji ¼
X

ðm;q0 Þ2M�ðQ[f1gÞ:mq0¼q

pmq0

i i 2 S; q 2 Q ð37Þ

Furthermore, it is interesting to see that these new constraints
(37) also guarantee the flow conservation, i.e., they imply the flow
conservation constraints. To see this, note that multiplying each
constraint (30.1) by q and then adding the results to (30.2) we
obtain:
X

j2S:ði;jÞ2A

X
q2Q

qzq
ij þ

X
j2T:ði;jÞ2A

zij ¼
X

q2Q[f1g

X
m2M

mqpmq
i i 2 S ð38Þ

Then, multiplying each constraint (37) by q, adding these equations
and performing adequate substitutions we obtain:
X
q2Q

X
ðj;iÞ2A:j2S[f0g

qzq
ji ¼

X
q2Q[f1g

X
m2M

mqpmq
i i 2 S ð39Þ

Thus, the left-hand sides of (38) and (39) are equal and we obtain:

X
q2Q

X
j;ið Þ2A:j2S[f0g

q zq
ji ¼

X
ði;jÞ2A:j2S

X
q2Q

qzq
ij þ

X
ði;jÞ2A:j2T:

zij i 2 S

which are the flow conservation constraints (22).
For completeness, we rewrite the model after these

modifications:

Min
X
i2S

X
m2M

X
q2Q[ 1f g

ai þ bmð Þpmq
i þ

X
ði;jÞ2A:j2S

X
q2Q

cijz
q
ij þ

X
ði;jÞ2A:j2T

cilzil

ð31Þ

Subject to:
X

ð0;jÞ2A:j2S

zNT
0j ¼ 1 ð19Þ

X
m2M

X
q2Q[ 1f g

pmq
i 6 1 i 2 S ð32Þ



Fig. 5. Illustration of a problem scenario.
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X
ði;jÞ2A:j2S

zq
ij ¼

X
m2M

mpmq
i i 2 S; q 2 Q ð30:1Þ

X
ði;jÞ2A:j2T

zij ¼
X
m2M

mpm1
i i 2 S ð30:2Þ

X
ði;jÞ2A:i2S

zij ¼ nj j 2 T ð23Þ

X
ðj;iÞ2A:j2S[f0g

zq
ji ¼

X
ðm;q0 Þ2MxðQ[f1gÞ:mq0¼q

pmq0

i i 2 S; q 2 Q ð37Þ

zq
ij 2 f0;1g ði; jÞ 2 A : j 2 S; q 2 Q ð24Þ

zij P 0 and integer ði; jÞ 2 A : j 2 T ð25Þ

pmq
i 2 f0;1g i 2 S; m 2 M; q 2 Q [ f1g ð33Þ

The previous model is denoted by P3A. In the previous sections,
different sets of linking constraints have been considered to derive
other models. Models P1B and P2B have been obtained by replac-
ing in P1A and P2A constraints (16.1) and (16.2) by (27.1) and
(27.2), respectively. With respect to P3A, constraints (16.1) and
(16.2) have been rewritten as (35.1) and (35.2) and then shown
to be redundant. Also, constraints (27.1) and (27.2) need to be
rewritten since they involve the variables wq

i . Using relations
(34), we obtain:

zq
ij 6

X
m2M

pmq
i ði; jÞ 2 A : j 2 S; q 2 Q ð40:1Þ

zij 6 nj

X
m2M

pm1
i ði; jÞ 2 A : j 2 T ð40:2Þ

From an integer point of view, constraints (40.1) and (40.2) do
not need to be involved in the previous model since constraints
(30.1) and (30.2) already link the flow variables with the variables
defined for optical splitters. Thus, we may view constraints (40.1)
and (40.2) as valid inequalities to strengthen the linear program-
ming relaxation of model P3A. We denote by P3AB the model
P3A augmented with these inequalities to be consistent with the
notation of the model P1 and P2.

The following results (Result 4, Result 5 and Result 6) update
the relation between the LP relaxation of the models presented
so far (as before, the inequalities follow from the construction of
the models).

Result 4� vðP3ALÞP vðP2ALÞ; vðP3ABLÞP vðP2ABLÞ

The computational results show that for all instances the bounds
are equal with respect to the bounds of the first inequality. How-
ever, we have built unrealistic instances (where we consider the
cost of a splitter type much greater than the cost of the other split-
ter types) for which strict inequality holds.

Result 5� vðP3ABLÞP vðP2BLÞ

This result follows directly from the second inequalities of results 2
and 4.

Result 6� vðP3ABLÞP vðP3ALÞ

Here, the computational results show that for many instances
the inequalities in results 5 and 6 are strict (and substantial
improvements are obtained).

The computational results will show that the models proposed
in this subsection reduce significantly the CPU times required to
determine the optimal integer solution. The improvement on the
LP bounds generated by the model P3AB is also significant, when
compared with the ones obtained with the models P2B and
P2AB. It is interesting to point out that the models P3 differ from
the models P2 augmented with the equalities (34) mainly because
of the disaggregation of constraints (36). This disaggregation seems
to be the key to reduce the CPU times.
4. Computational results

In order to evaluate the ILP models proposed in Section 3, we
have generated different problem scenarios with characteristics
from urban areas. Each scenario is defined in an area with Nh hor-
izontal streets and Nv vertical streets with a distance Dh between
horizontal streets and a distance Dv between vertical streets. The
set S of intermediate locations (i.e., candidate locations for split-
ters) is composed by all cross-sections, in a total of Nh � Nv loca-
tions. Both node 0 (the location of Central Office) and all client
locations of set T are randomly placed on a point belonging to a
street. Fig. 5 shows an example of an instance with
Nh ¼ 4;Nv ¼ 5 and jTj ¼ 20.

For each scenario, we set the number of client terminals nj for
each j 2 T , by randomly generating an integer value between Tmin

and Tmax with a uniform distribution. Table 1 presents the param-
eters used in the generation of 12 different scenarios, together with
the total number of client terminals and the required PON capacity
NT of the instance. The scenarios are grouped in three sets: S1 with
scenarios requiring a PON with a capacity of 64 terminals, S2 with
scenarios requiring a PON with a capacity of 128 terminals and S3

with scenarios requiring a PON with a capacity of 256 terminals.
The scenarios of the same set consider different client terminal
concentration values, i.e., different average number of client termi-
nals per client location.

Note that the cost of an optimal solution is a trade-off between
fiber costs (given by cij) and splitter associated costs (given by ai

and bm). In general, the relation between these two cost compo-
nents depends on each particular case (for example, ownership
or third party rental of fiber cables and ducts, fiber termination
labor costs that can vary between different countries, etc.). If fiber
costs are dominant, optimal PON solutions include more splitters
in order to minimize the total fiber length. On the other hand, if
splitter associated costs are dominant, optimal PON solutions
include fewer splitters in order to minimize the splitter costs.

In order to study the efficiency of the proposed models in both
cases, we have defined two test instances for each previously
described scenario and indicate them as A and B. In both cases,
we have considered the fiber costs given by cij ¼ cf þ cu � dij,
where cf ¼ 10 is a fixed cost due to fiber termination, cu = 1 is a
cost per unit of fiber length and dij is the Manhattan distance from
node i to node j. We distinguish the instances A and B in the splitter
associated costs. In test instances A, we consider a splitter cost as a



Table 2
Gaps (in percentage) between the LP bounds and the optimal cost values.

Instance P1A P1B P1AB P2A P2B P2AB P3A P3AB

1A 52.43 30.38 29.52 52.43 28.74 28.72 52.43 13.12
2A 58.30 32.51 32.03 58.30 30.75 30.48 58.30 15.57
3A 57.82 27.51 26.69 57.82 25.44 25.44 57.82 7.84
4A 59.29 25.36 24.95 59.29 24.20 24.20 59.29 7.14
5A 33.16 20.40 20.36 33.16 20.07 20.07 33.16 9.49
6A 57.10 32.49 32.40 57.10 31.72 31.72 57.10 13.60
7A 59.15 30.83 29.88 59.15 29.27 29.26 59.15 11.01
8A 56.69 29.03 28.66 56.69 28.11 28.11 56.69 8.52
9A 45.74 28.21 27.78 45.74 27.48 27.48 45.74 13.02
10A 48.22 28.12 27.75 48.22 27.34 27.33 48.22 11.05
11A 53.26 30.46 29.84 53.26 29.43 29.42 53.26 11.80
12A 57.23 29.86 29.50 57.23 29.15 29.15 57.23 11.16
1B 60.65 44.56 43.91 60.65 42.73 42.73 60.65 8.07
2B 65.39 47.51 47.20 65.39 44.95 44.95 65.39 7.21
3B 62.98 40.42 39.84 62.98 37.89 37.89 62.98 6.34
4B 66.88 43.63 43.35 66.88 41.94 41.94 66.88 8.83
5B 45.55 36.30 36.25 45.55 35.80 35.80 45.55 7.42
6B 66.25 49.56 49.51 66.25 48.58 48.58 66.25 5.06
7B 67.14 47.16 46.48 67.14 45.52 45.52 67.14 5.06
8B 66.59 47.81 47.57 66.59 46.64 46.64 66.59 6.16
9B 63.19 52.40 52.14 63.19 51.76 51.76 63.19 16.85
10B 63.79 50.97 50.73 63.79 50.23 50.23 63.79 10.68
11B 65.78 50.44 50.03 65.78 49.46 49.46 65.78 10.38
12B 68.53 50.15 49.91 68.53 49.39 49.39 68.53 9.30

Average 58.4 37.8 37.3 58.4 36.5 36.5 58.4 9.8

Table 3
Optimal cost values and runtime (in seconds) for S1.

Instance P1A P1B P1AB P2A P2B P2AB P3A P3AB OPT

1A 14 35 21 7 5 9 1 1 6698
2A 8 13 9 2 2 2 1 1 6204
3A 32 96 56 15 24 19 1 1 6313
4A 25 67 31 17 23 10 1 1 6612
1B 14 23 18 1 1 1 1 1 9886
2B 6 11 3 1 1 1 1 1 9509
3B 11 31 25 2 5 2 1 1 9095
4B 44 189 81 5 8 9 2 2 10,254

Table 1
Parameters of all problem scenarios.

Set Scenarios Nh Nv Dh Dv jTj Tmin Tmax
P

nj NT

S1 1 4 4 120 120 10 4 8 60 64
2 4 4 120 120 15 2 6 63 64
3 4 5 120 100 20 2 4 52 64
4 4 5 120 100 30 1 3 59 64

S2 5 5 5 100 100 10 8 16 119 128
6 5 5 100 100 20 4 8 115 128
7 5 6 100 90 30 2 6 121 128
8 5 6 100 90 60 1 3 112 128

S3 9 5 7 100 80 20 8 16 244 256
10 5 7 100 80 40 4 8 233 256
11 6 7 90 80 60 2 6 243 256
12 6 7 90 80 120 1 3 248 256
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sum of a fixed component ai ¼ 100 for all nodes i 2 S and a type
dependent cost as follows: b2 ¼ 10; b4 ¼ 15; b8 ¼ 22; b16 ¼ 34;
b32 ¼ 50; b64 ¼ 76; b128 ¼ 114 and b256 ¼ 170. In test instances B,
we multiply the previous values by 5, i.e., we consider a fixed
component ai = 500 for all nodes i 2 S and a type dependent cost
as follows: b2 ¼ 50; b4 ¼ 75; b8 ¼ 110; b16 ¼ 170; b32 ¼ 250; b64 ¼
380; b128 ¼ 570 and b256 ¼ 850.

For all 24 test instances, we have solved all ILP models pre-
sented in Section 3 using CPLEX 12.3 from IBM ILOG. First, we have
computed the LP lower bounds. Table 2 presents the obtained gaps
(in percentage) between the LP lower bounds and the value of the
optimal integer solutions. Table 2 also shows, in its last line, the
average gaps exhibited by each model. The conclusions from these
results are that, for these instances, models P1A, P2A and P3A have
always the same LP bound and that the additional constraints con-
sidered in the other models always improve the gaps. Note that, in
particular, the additional constraints (40.1) and (40.2) used in
model P3AB have reduced significantly the LP bound of model P3A.

While solving the ILP models with CPLEX, we have defined the
following branching priorities: for models P1, we have set a higher
branching priority to variables pNT

i and zNT
0i ; i 2 S, while for the other

models, we have set a higher branching priority to variables pNT1
i

and zNT
0i ; i 2 S. In both cases, the priorities assigned to pNT

i (in models
P1) and pNT1

i (in models P2 and P3) are higher than the ones
assigned to zNT

0i ; i 2 S. No priority was set to the remaining variables.
The assigned branching priorities were motivated by the analysis
of the LP relaxation solutions. These priorities aim to quickly
remove (in the branch-and-cut tree) the characteristics of the LP
solutions not included in feasible integer solutions. In LP solutions,
many variables associated with the optical splitters of higher ratio
1:NT take non zero values (pNT

i in models P1 and pNT1
i in models P2

and P3), whereas in an integer solution only one of such variables
might be non-zero. In addition, when one of these variables is fixed
to one, the ILP is trivially solved. Therefore, the highest priority
value was assigned to these variables. On the other hand, in LP
solutions many variables associated with connections outgoing
from the Central Office take non zero values, while in an integer
solution only one of these connections is in the solution. Further-
more, after fixing the inclusion of one of these connections, the
resulting problem is reduced to a subproblem with one less level.
Thus, the second highest priority value was assigned to these
variables.

Remember that, as described in Section 3, model P3AB is
defined based on model P3A augmented by constraints (40.1)
and (40.2). The number of these additional constraints is very large
when compared with the number of constraints of model P3A.
Since these constraints are not needed to define the problem, we
have defined them in CPLEX as ‘‘user cuts’’. In this way, CPLEX adds
them to its own sets of cuts and uses them only if they help in its
own optimization process. The runtimes of P3AB reported in the
next tables were obtained in this way.

The computer used to obtain the optimal solutions is an Intel
(R) Core (TM) i3 550 3.2 gigahertz with 4 gigabyte. We have
defined a runtime limit of six hours for CPLEX to obtain the optimal
integer solutions. Tables 3–5 present the results for the instances
of set S1; S2 and S3, respectively. Besides the cost of the optimal
integer solution of each test instance (column ‘OPT’), these tables
present for each model the runtime (in seconds) for obtaining
the optimal integer solution. When a percentage value is pre-
sented, it means that CPLEX did not solve to optimality the model
within the six hours of runtime limit and the percentage value is
the gap between the obtained upper and lower bounds at the
end of the execution.

The results of Table 3 indicate that the problem instances of set
S1 are easy to solve with all proposed models. All instances have
been solved to optimality within at most a few minutes. Note that
these instances are easy also because the instance sizes (in number
of elements of sets S and T) are small. Nevertheless, models P3A
and P3AB already exhibit a better performance than the others
since they can solve all problem instances within at most 2 sec-
onds. Table 4, shown next, presents the results obtained for the
instances of set S2.

These results indicate that some of these instances are harder to
solve. Moreover, the differences between the results obtained by
the different models become more significant: the P1 models do
not solve to optimality some of these instances; the P2 models



Table 4
Optimal cost values and runtime (in seconds) for S2.

Instance P1A P1B P1AB P2A P2B P2AB P3A P3AB OPT

5A 10 23 10 2 6 7 1 1 7205
6A 222 938 1599 56 89 64 2 2 9277
7A 13,550 3.07% 3.79% 1404 4117 3029 28 26 10,994
8A 12,048 3.54% 3.10% 543 1660 1797 23 23 10,192
5B 4 13 8 1 2 1 1 1 10,417
6B 91 280 121 3 7 5 1 1 14,327
7B 988 1827 1528 10 27 23 2 2 16,273
8B 1103 6509 3070 17 168 186 4 2 15,772

Table 5
Optimal cost values and runtime (in seconds) for S3.

Instance P1A P1B (%) P1AB P2A P2B P2AB P3A P3AB OPT

9A 11,942 0.74 3735 200 1663 698 6 6 14,142
10A 3.32% 5.05 4.67% 6239 12,626 7151 24 30 16,011
11A 7.78% 9.29 8.35% 3.49% 3.99% 3.91% 899 404 18,478
12A 8.01% 10.00 8.97% 4.27% 4.79% 4.99% 5892 3978 19,820
9B 3.99% 8.44 5.57% 504 2480 2367 25 21 23,780
10B 5.70% 7.87 6.53% 1093 7541 5087 38 38 25,880
11B 7.48% 8.80 7.76% 6225 0.81% 1.26% 173 199 28,398
12B 7.16% 8.06 7.57% 21,277 1.80% 1.42% 316 306 30,367

Table 6
Runtime (in seconds) for S3.

Instance P3A⁄ P3AB⁄ P3A P3AB

9A 6 32 6 6
10A 36 295 24 30
11A 3332 9622 899 404
12A 16,006 3.15% 5892 3978
9B 26 184 25 21
10B 67 301 38 38
11B 262 1827 173 199
12B 760 7265 316 306

Table 7
Single, two and unconstrained splitting stage optimal costs of S1.

Instance 1:64 1:2 + 1:32 1:4 + 1:16 1:8 + 1:8 U Gain (%)

1A 13,655 9769 7282 6867 6698 2.5
2A 12,326 9284 6905 6204 6204 0.0
3A 12,666 8868 6491 6366 6313 0.8
4A 11,897 9341 7650 6835 6612 3.3
1B 14,395 11,409 9886 11,259 9886 0.0
2B 13,030 10,924 9509 10,596 9509 0.0
3B 13,370 10,508 9095 10,758 9095 0.0
4B 12,601 10,981 10,254 11,227 10,254 0.0

Table 8
Single, two and unconstrained splitting stage optimal costs of S2.

Instance 1:128 1:2 + 1:64 1:4 + 1:32 1:8 + 1:16 U Gain (%)

5A 20,410 14,000 7557 9186 7205 4.7
6A 23,569 19,483 13,410 9551 9277 2.9
7A 28,523 19,611 14,880 11,497 10,994 4.4
8A 26,726 19,406 13,715 10,996 10,192 7.3
5B 21,266 15,848 10,471 13,962 10,471 0.0
6B 24,425 21,331 16,270 14,327 14,327 0.0
7B 29,379 21,459 17,740 16,273 16,273 0.0
8B 27,582 21,254 16,575 15,772 15,772 0.0
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can still find all optimal solutions within the maximum running
time and the P3 models solve all instances with small running
times (at most 28 seconds with P3A and 26 seconds with P3AB).
Table 5, shown next, presents the results obtained for the instances
of set S3.

The results of Table 5 show that only models P3A and P3AB
have solved all problem instances to optimality, some of them with
short computing times. All other models have performed quite
worse than these two models since they could not solve to opti-
mality many instances. In fact, we consider that P3AB is better than
P3A because it was able to solve the hardest problems in shorter
runtimes (namely, instances 12A and 11A). Nevertheless, for the
other easier instances, both models (P3A and P3AB) seem to be
equivalent.

A global analysis of the results shown in Tables 3–5 shows two
additional relevant conclusions. First, the required runtimes to
solve the test instances is higher for instances A than for instances
B. Note that instances A consider lower splitter associated cost,
which means that the PON design problem is harder when the fiber
associated costs are dominant. Second, the test instances with
lower client terminal concentration values (i.e., the same number
of client terminals distributed over a larger number of locations)
are harder for all models. This observation is not surprising since
the models of these instances exhibit more variables and
constraints.

In order to access the improvements obtained by the adopted
branching priorities and the use of constraints (40.1) and (40.2)
as CPLEX ‘‘user cuts’’, in the next Table 6 we present the running
times obtained by models P3A and P3AB without such settings
(shown in columns ‘P3A⁄’ and ‘P3AB⁄’). For comparison reasons,
we repeat the running times of models P3A and P3AB already
shown in the previous Table 5. We show these results only for
set S3, which is the set of the hardest problem instances where
the differences are more significant. These results clearly show that
without using the branching priorities (and ‘user cuts’, in case of
P3AB), the running times become larger (in particular for the hard-
est problems) and one of the instances (instance 12A) could not be
solved to optimality by model P3AB.

Note that the proposed models can be easily adapted to address
the single PON design problem for the traditional PON topology
approaches (see discussion of Section 2). Using model P3A, this is
done in the following way. In the single splitting stage case, we
only consider the variables associated with splitters of maximum



Table 9
Single, two and unconstrained splitting stage optimal costs of S3.

Instance 1:256 1:2 + 1:128 1:4 + 1:64 1:8 + 1:32 1:16 + 1:16 U Gain (%)

9A 63,145 42,535 29,824 20,047 16,677 14,142 15.2
10A 57,833 38,465 27,932 21,201 16,947 16,011 5.5
11A 64,478 43,766 29,745 23,484 20,478 18,478 9.8
12A 68,881 50,485 34,496 25,795 21,255 19,820 6.8
9B 64,225 44,687 33,100 25,335 25,789 23,780 6.1
10B 58,913 40,617 31,208 26,489 26,059 25,880 0.7
11B 65,558 45,918 33,021 28,772 29,590 28,398 1.3
12B 69,961 52,637 37,772 31,083 30,367 30,367 0.0
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ratio pNT;1
i , i 2 S, or equivalently, we set the variables associated

with splitters of all other ratios equal to zero. In addition, we do
not consider the variables associated with fiber connections
between intermediate nodes, i.e., we set them equal to zero. In
the two splitting stage case, let 1:m1 be the type of optical splitters
required in the first splitting stage. We only consider the variables
associated with splitters pm1 ;ðNT=m1Þ

i and pðNT=m1Þ;1
i ; i 2 S, or equiva-

lently, we set all other variables associated with splitters equal
to zero. In addition, we only consider the variables associated with
fiber connections between intermediate nodes whose flow value is
equal to (NT/m1), i.e., we set all other variables associated with
fiber connections equal to zero.

Tables 7–9 show the optimal cost values obtained for the three
sets of instances and for the different single splitting and two split-
ting stage configurations. These tables also include the (previously
presented) optimal cost values obtained for the unconstrained
splitting stage solutions (column ‘U’) and the last column (‘Gain’)
shows the cost gains, in percentages, obtained by the uncon-
strained splitting stage solution when compared with the best
among all other solutions.

Note that the optimal unconstrained splitting stage costs can-
not be worse than any of the other costs because all other solutions
are feasible solutions for our problem. In general, Tables 7 and 8
show that for PONs with a capacity of 64 and 128 terminals, rele-
vant cost gains are already obtained for many instances A (i.e., with
lower splitter associated costs) and Table 9 shows that for PONs of
higher capacity (256 terminals), there are cost gains in almost all
instances and the cost gains are quite significant for instances A.
These results demonstrate the relevance of the problem addressed
in this paper, i.e., the optimal design of unconstrained splitting
stage PONs.

As a final remark, we note that the single splitting stage and the
two splitting stage adapted formulations are much more compact
when compared with the unconstrained splitting stage formula-
tions and this has a strong impact in the runtime required to solve
the problem instances. All instances from 1 to 10 were solved to
optimality within 2 seconds of computational time and the hardest
cases were instance 12B, with a splitting stage distribution of
1:8 + 1:32, that took 21 seconds and instance 11B, with a splitting
stage distribution of 1:16 + 1:16, that took 11 seconds.

5. Conclusions

In this paper, we have addressed the single PON network design
problem with unconstrained splitting stages, i.e., the splitting ratio
and the number of splitting stages are not constrained to a given
target design but, instead, are decided based on the cost of the net-
work solution.

We have proposed several models for this problem, which are
reformulations, based on discretization of variables and disaggre-
gation of variables and constraints, of a generic single-source/
multi-destination flow model with additional constraints on the
intermediate nodes. The results showed the advantages of the
reformulations in the sense that the reformulations introduced
on the models always helped in reducing the solution runtimes.
Moreover, with the last reformulations, we were able to solve to
optimality all considered problem instances.

We have also described how model P3A can be adapted for the
traditional PON topology approaches (both single and two splitting
stage problems). Note that the same adaptation can be used in all
other proposed models. We have presented computational results
showing that for PONs of larger capacity significant cost gains can
be obtained with the unconstrained splitting stage approach when
compared with the traditional approaches.

For future work, a natural follow up is to address the network
design of multiple PONs with unconstrained splitting stages and
allowing different topologies for each PON. This problem is of par-
ticular interest in the network planning stages when PON equip-
ment solutions for 128 and 256 client terminals are envisaged.
The clustering of client terminals to PONs taking into account that
each PON can have any topological configuration (i.e., not con-
strained to a traditional topology) is potentially more efficient than
current solution techniques available from the literature, provided
that techniques able to find solutions with small optimality gaps
can be achieved.
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