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a b s t r a c t

This paper addresses video transcoding from H.264/AVC into MPEG-2 with reduced

complexity and high rate-distortion efficiency. While the overall concept is based on a

cascaded decoder–encoder, the novel adaptation methods developed in this work have

the advantage of providing very good performance in H.264/AVC to MPEG-2

transcoding. The proposed approach exploits the similarities between the coding tools

used in both standards, with the objective of obtaining a computationally efficient

transcoder without penalising the signal quality. Fast and efficient methods are devised

for conversion of macroblock coding modes and translation of motion information in

order to compute the MPEG-2 coding format with a reduced number of operations, by

reusing the corresponding data embedded in the incoming H.264/AVC coded stream. In

comparison with a cascaded decoder–encoder, the fast transcoder achieves computa-

tional complexity savings up to 60% with slightly better peak signal-to-noise ratio

(PSNR) at the same bitrate.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, the H.264/AVC video standard [1] presents
a much better compression performance than its recent
predecessors, namely MPEG-2 [2]. However, the MPEG-2
[3] video standard is still the most used video compres-
sion format and its widespread use in both professional
and user equipment is expected to last for several years
ahead, particularly in digital television (DTV), personal
video recorders (PVR) and digital versatile disc (DVD). Due
to its higher compression efficiency, H.264/AVC is increas-
ingly gaining acceptance in multimedia applications and
services, such as high definition digital television (HDTV),
ll rights reserved.
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l.: +351244820300;
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mobile TV (MTV) and the internet. The use of diverse
coding standards at the same time, in both the profes-
sional and consumer market, leads to interoperability
problems, because the same type of source material may
be available in a format which is not compatible with the
target equipment. Furthermore it is not likely that
technology migration, in both professional and user
equipment, happens in such a short period of time that
problems arising from co-existence of both standards can
be ignored. Therefore, transcoding from H.264/AVC to
MPEG-2 format is necessary to maintain backward
compatibility and ease technology migration.

A possible application scenario, where such type of
transcoding is potentially useful, is depicted in Fig. 1. Both
the service provider and the network operator benefit
from using H.264/AVC for content storage and delivery
because it allows significant savings in storage capacity
and network bandwidth, but at the user premises the
MPEG-2 format is necessary because of legacy equipment.
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Fig. 1. An application scenario.
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Therefore, a transcoding functionality must be included in
the home gateway to perform the necessary format
adaptation. Since this might be one of the multiple
processes running on the same hardware platform, it is
important to minimise the computational complexity,
subject to acceptable quality constraints.

In the recent past, much research effort has been
devoted to develop efficient transcoding from MPEG-2
into H.264/AVC, in order to migrate legacy video content
to the new format [4–6]. However, too little effort has
been devoted to the problem of backward compatibility
[7] and a similar type of transcoding was mostly
addressed in [8–12]. In [7], the authors highlight some
technical problems and research directions, whereas a
similar type of transcoding was proposed in [10–12,8].
However, these transcoders are targeted for the baseline
profile, i.e., only P frames are addressed, and they do not
deal with multiple reference frames in H.264/AVC. While
in [11] the authors extend their previous method [10] of
motion refinement by using a dynamic search window to
improve transcoding efficiency, in [12] the authors use a
fixed window of 2 pixels for motion vector refinement. A
transform domain approach was used in [9] but the
results show a quality loss of about 10 dB, which is
definitely too much for any practical purpose. In our
recent work, a transcoding architecture was proposed for
efficient conversion between H.264/AVC and MPEG-2 [13].
Although not all block coding modes were processed by
fast conversion methods, its efficiency was shown to be
suitable for several applications [14].

In this paper we propose a complete transcoding
architecture, expanding the previous methods to all
H.264/AVC coding modes, including B frames and specific
modes (e.g., unrestricted motion vectors). Table 1 shows
an approximate comparison with other mechanisms
proposed in the literature. Overall, the proposed fast
methods are capable of reducing the computational
complexity up to 60%, in comparison with a reference
transcoder comprised a cascaded decoder–encoder.
Furthermore, by reusing the most efficient coding deci-
sions embedded in the H.264/AVC input stream, the
proposed fast transcoder provides slightly better PSNR
than the reference transcoder.

A trivial implementation of a transcoder is a cascade
of an H.264/AVC decoder and an MPEG-2 encoder.
However, such a scheme completely ignores the
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Table 2
Main differences between H.264/AVC (main profile) and MPEG-2 (main

profile).

Features H.264/AVC MPEG-2

Motion estimation

accuracy

1=4 pel 1/2 pel
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2 for B pictures

Macroblock

partitions

16� 16, 16� 8,

8� 16, 8� 8, 8� 4,

4� 8, 4� 4

16� 16, 16� 8

(interlace)

Spatial prediction

type

Nine intraprediction

modes

None

Transform type Integer transform Fixed point DCT

Entropy coding CAVLC / CABAC VLC

H.264 
bitstream YUV MPEG-2 

bitstream

Parameter 
Converter

MPEG-2 
Encoder

H.264 
Decoder

Fig. 2. Modified transcoding architecture.
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H.264/AVC encoding information embedded in the bit-
stream, which is the result of smart rate-distortion (RD)
decisions, aiming at encoding each block with the highest
possible efficiency. By using such a transcoder, the H.264/
AVC decoded frames have to be fully MPEG-2 encoded, as
if no previous coding information existed. In order to
reduce this unnecessary complexity, the approach de-
scribed in this paper aims at simplifying the MPEG-2
encoding process by reusing the information contained in
the H.264/AVC bitstream. In particular, this paper pro-
poses fast and efficient conversion methods for interframe
coding modes, capable of achieving a significant reduction
in computational complexity with marginal objective
quality reduction, when compared with full recoding.
Transform domain conversion of intracoding modes is also
presented and discussed, but not implemented in the test
transcoder. Due to the highly non-linear nature of most
H.264/AVC intraprediction modes, the computational
complexity of intraconversion in the transform domain
is higher than that of pixel domain approach for most of
these modes. Since intraconversion in the DCT domain
was not included in the test transcoder, this topic is
discussed in Section 5 and then described with more
detail in Appendix A.

The paper is organised as follows. After this introduc-
tion, where the motivation and the context of the
proposed work are described, Section 2 points out the
relevant differences between MPEG-2 and H.264/AVC,
which are important for subsequent sections. Section 3
presents the functional architecture for the proposed
transcoding scheme. Section 4 describes the fast conver-
sion methods proposed for transcoding H.264/AVC video
streams into MPEG-2, and in Section 5 the transform
domain intraconversion is discussed with reference to the
particular cases described in Appendix A. Finally, Section 6
presents the experimental results along with a critical
discussion of the relevant issues and Section 7 concludes
the paper.
2. H.264/AVC and MPEG-2: relevant differences

The H.264/AVC standard introduces a relevant number
of improved coding tools in comparison to MPEG-2, as
short listed in Table 2. Several types of intraprediction
modes, macroblock (MB) partition in diverse subblocks,
integer transform, motion accuracy up to quarter-pixel,
unrestricted boundaries for motion vectors and the use of
up to 16 reference frames, are examples of new tools
which significantly contribute to improve the coding
efficiency over previous standards. Note that MPEG-2
only uses half-pixel accuracy in motion estimation/
compensation (ME/MC), the motion vectors are con-
strained to the frame boundaries and only one or two
reference frames can be used for P and B frames,
respectively. Moreover, MPEG-2 does not allow the same
MB partitioning modes neither intraprediction. In the case
of MPEG-2, ME is computed for either 16�16 or 16� 8
blocks whereas H.264/AVC allows a wider set of block
partitions, such as 16� 16, 16� 8, 8� 16, 8� 8, 8� 4,
4� 8 and 4� 4.
3. H.264/AVC to MPEG-2 transcoding architecture

The trivial transcoding architecture is based on a
cascade of an H.264/AVC decoder with an MPEG-2
encoder. This is a straightforward sequential process
capable of achieving good quality results, though at
maximum computational complexity cost. Such a scheme
completely discards the H.264/AVC encoding information
embedded in the bitstream and performs full motion
estimation, which is computationally intensive and con-
sumes most of the processor resources for encoding.
Nevertheless the cascaded transcoder, referred to as the
reference transcoder, is useful for comparing its perfor-
mance with other architectures and algorithms.

By exploiting the coding information embedded in the
incoming bitstream, it is possible to reuse several H.264/
AVC coding parameters at the MPEG-2 encoder with little
additional computational effort. Therefore, the computa-
tional complexity of the MPEG-2 encoder module can be
greatly reduced, as compared with a standard full encoder.
Fig. 2 shows the high level structure of the transcoding
architecture used in this paper. It is based on a cascaded
transcoder, where the decoder and the encoder are
modified implementations of the H.264/AVC JM13.2 [15]
and MPEG-2 video v1.2 [16], and an additional conversion
module where the main adaptation functions operate.

Fig. 3 presents a more detailed structure of the
proposed transcoding architecture, where a functional
module is included between the H.264/AVC decoder and
the MPEG-2 encoder. Such module acts as an adaptation
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interface, by reprocessing the coding parameters received
from the H.264/AVC decoder and feeding the MPEG-2
encoder, in order to short-cut some typical computation
intensive operations. Since motion estimation is one of the
most processor consuming tasks at the encoder, reducing
the complexity of this function is one of the objectives to
be pursued, in order to achieve low computational
complexity transcoding [17].

When a video signal is encoded with the H.264/AVC its
characteristics are analysed in detail and each MB is
efficiently encoded in regard to the best rate-distortion
point. Such optimal RD coding modes may be partially
reused by the MPEG-2 encoding module, after being
adapted in the conversion module. Different types of
parameters, such as MB mode information, picture type,
motion information, etc., are then extracted from the
bitstream at the H.264/AVC decoder, and these parameters
are further processed and converted to an MPEG-2
compatible format. The parameter extraction and
adaptation procedure can also be used in intraframe
coding, by converting the integer transform (IT) coeffi-
cients into discrete cosine transform (DCT) coefficients
[18].
3.1. Decoder module

In Fig. 3, the H.264/AVC decoder module extracts
coding parameters and the video signal itself from the
input stream, for both the conversion and MPEG-2
encoder modules. Therefore the input video stream is
decoded and the extracted information is provided to the
conversion module for further processing and adaptation
to the MPEG-2 format. The coding parameters consist of
MB and partition types, motion vectors, reference images,
prediction modes, transform coefficients, etc.
3.2. Conversion module

The conversion module is responsible for interfacing
between the decoder and the encoder, by converting a set
of H.264/AVC parameters into MPEG-2 format. These
parameters are analysed and converted when they are
useful for reducing computational complexity. Further-
more, this module is divided into three independent
submodules:
�
 the parameter converter—exploits the coding para-
meters, such as motion vectors and partition types;

�
 the picture buffer—handles the extracted parameters

and the uncompressed video data flow from the
decoder to the encoder;

�
 the IT/DCT coefficient conversion—converts the H.264/

AVC IT coefficients directly to MPEG-2 DCT in the
transform domain.

The picture buffer is implemented as a ring buffer and
its size is defined according to either the available
memory or a related cost function. A size of one single
frame should be avoided in platforms with multi-core
processors, because one of the processes will be always
waiting, either to store in the buffer or to read from it. The
IT/DCT coefficient conversion in the transform domain is
addressed in Section 5, while the interframe prediction
conversion modes is presented in Section 4.

3.3. Encoder module

The MPEG-2 encoder module is a modified version of a
standard encoder, which has the additional capability of
receiving a set of parameters from the conversion module
and also that of providing several control signals to some
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encoding functions, namely the motion estimation. The
extracted motion parameters, after being processed by the
parameter converter, are delivered to the motion estimation

block which allows skipping most of the search algorithm.
The motion estimation function checks whether the

current MB can be efficiently encoded with the H.264/AVC
converted information and, if this is the case, the
converted motion vector is used to build the best MB
prediction. For those prediction modes which do not have
enough similarities to be worth fast transcoding, the
transcoder switches to classical motion estimation, which
is the case of most intraprediction modes.
4. Inter-MB conversion

As mentioned before, for inter-MB conversion, the
proposed method extracts the motion vector information
fast conversion ?
Can use

Is last Macroblock ?

Is last Frame ?

Yes

No

Yes

No

START

Encode Frame

YesNo

Encode Macroblock

END

H2M
Mode Conve

Classical
Motion Estimation

Fig. 4. Functional operation mode
and the MB types from the H.264/AVC bitstream. The
reuse of such parameters in the MPEG-2 encoder allows to
bypass motion estimation, which accounts for up to 70%
of the encoder complexity [19]. This section describes
coding mode conversion techniques for the MB types
defined in P and B slices, addressing in particular those
MB types that have similar characteristics and higher level
of compatibility between both standards. The proposed
MB conversion methods are also discussed along with
possible solutions to overcome the inherent standard
incompatibilities.

Fig. 4 describes the operation of the transcoder,
highlighting the modifications which change the opera-
tion of a standard encoder. As the figure shows, the
encoding process is performed on a MB basis and the
decision to select either fast conversion or classical
encoding is based on the constraints imposed by the
coding modes. If such constraints exclude a MB from fast
rsion

Compute all MV
candidates

Calculate residue and
store as MV best if lower

All MV candidates tested ?

Refinement

Yes

No

for interframe conversion.
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conversion, then full motion estimation is used without
any extra input information. The remaining cases are
described in the following sections.

4.1. 16� 16 SKIP

Conversion of H.264/AVC SKIP MBs to MPEG-2 is not
straightforward because the definition of a SKIP MB is
different in each standard, thus full compatibility does not
exist and direct conversion is not possible. However, since
in P slices the H.264/AVC SKIP MB represents either
constant motion or static areas, in MPEG-2 it only
represents static areas, i.e., MV ¼ 0, then MPEG-2 SKIP
mode is actually a subset of its counterpart in H.264/AVC.

In the case of B slices, both standards define the SKIP
mode for either constant motion or static areas. Thus, fast
mode conversion is enabled and becomes more efficient
than in P slice case. As it will be shown in Section 6, the
computational complexity savings for this type of mode
conversion are very impressive, because the number of
processing operations necessary to accomplish a trans-
coded MB is very low.

In both P and B slice types, MPEG-2 constraints the use
of SKIP mode in the first and last MB of each slice. Such a
constraint is particularly relevant when using small frame
sizes, because MPEG-2 imposes each slice to start and end
in the same MB row, and this has the effect of increasing
the number of excluded MBs for this SKIP mode conver-
sion because an equivalent constraint does not exist in
H.264/AVC.

4.2. 16� 16 predicted

Conversion of 16� 16 MBs from H.264/AVC to MPEG-2
can be achieved with low computational complexity
because this MB size exists in both standards. Motion
estimation is performed in a similar way in both cases,
which allows the reuse of motion information from the
H.264/AVC bitstream, thus avoiding computation of the
full motion estimation.

The mode conversion of this MB type is constrained by
some coding tools introduced in H.264/AVC that raise
incompatibilities between both standards, such as those
arising from multiple reference pictures that can be used
in H.264/AVC (e.g., Fig. 5), where each slice can use up to
16 reference pictures, whereas in MPEG-2 this is restricted
to a maximum of 2 adjacent coded pictures. When
converting from H.264/AVC to MPEG-2, all motion vectors
pointing to reference frames, which are temporally
Fig. 5. Multi-reference prediction.
located farther than the adjacent ones, should be
converted in order to make them compliant with
MPEG-2 reference frames. This conversion method is
described in Section 4.4, where scaling of H.264/AVC
motion vectors is addressed.

Along with the previous constraint, the unrestricted

motion vectors used in the H.264/AVC standard allows the
use of motion vectors pointing to areas outside the frame
boundaries. Since this is not supported in MPEG-2, a
specific conversion method was developed, in order to
reuse such motion vectors, as described in Section 4.5.

Finally, a last constraining factor in conversion of this
coding mode is the pixel accuracy used in both standards.
While H.264/AVC use motion vectors with quarter pixel
accuracy, MPEG-2 only allows half pixel. Therefore
accuracy conversion is mandatory and it is performed by
rounding the motion vector to the nearest half-pixel
position.

4.3. MB partitioning

The H.264/AVC standard makes use of MB partitioning
into blocks of sizes (16� 8, 8� 16 and 8� 8) and then,
each block can be further partitioned into several smaller
subblocks of sizes (8� 4, 4� 8 and 4� 4). Such partition-
ing scheme of 16� 16 MBs into smaller blocks improve
the prediction efficiency because, in general, a residue of
lower energy is achieved for each partition. Since each
8� 8 partition might have its own reference picture, a
single H.264/AVC MB may use up to four different
reference pictures.

Conversion of H.264/AVC partitioned MBs is imple-
mented by merging all partitions into a unique 16� 16
MPEG-2 MB, as illustrated in Fig. 6. The motion vector of
each partition is used to compute a prediction error of the
16� 16 MPEG-2 MB and the criterion to select the best
candidate is the lowest sum of squared differences (SSD).
Such a process is described as follows: the motion vectors
(MV) from the set P of H.264/AVC MB partitions ðpiÞ are
tested as MPEG-2 predictions and the best candidate
(MVbest) is chosen according to a minimum residue
criterion, the SSD, given by the solution of the following
equation:

MVbest ¼ arg min
i2P

SSD½MVðMBpiÞ� (1)

4.4. MV scaling

As mentioned before, in the H.264/AVC standard a MB
can use up to 16 reference frames for motion estimation,
while MPEG-2 uses only one or two, according to the
picture type P or B, respectively. Therefore reuse of H.264/
AVC motion vectors without further processing is only
possible in the particular cases where the H.264/AVC
reference frames are temporally located in MPEG-2
compatible positions. Since in general this is not the case,
the original H.264/AVC motion vectors need to be scaled.
This is shown in Fig. 7, where two possible cases of
multiple references in H.264/AVC are converted into
MPEG-2 pictures of type B and P, respectively. This type
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of conversion assumes that motion is constant between
the two frames used as references in the original and
transcoded video streams.

Eqs. (2) and (3) are used to obtain the new motion
vector MVMPEG2 from the original one ðMVH:264Þ. These
motion vectors are defined as the number of pixels that
the reference block is displaced from the current one in
the left/right and up/down directions. By using Eq. (2), the
motion vector MVH:264 is resized according to the
temporal distance Dt between the current frame Cn and
the reference frames, defined by their temporal indices
H:264ref n and MPEG2ref n, respectively,

MVMPEG2 ¼ round
MVH:264

Dt

� �
(2)

where

Dt ¼
Cn � H:264ref n

Cn �MPEG2ref n

(3)

For example, if the following encoding sequence is
used: IBPBPBPBP, with the frame numbering: 012345678
and Cn ¼ 8, H264ref n ¼ 2 and MPEG2ref n ¼ 6, then
Dt ¼ ð8� 2Þ=ð8� 6Þ ¼ 3. This means that the H.264/AVC
motion vector should be resized by a factor of 3, in order
to be used with an MPEG-2 reference frame.

The round operator in Eq. (2) ensures that the resulting
motion vector is rounded to the nearest half-pixel
position. In Eq. (3), Dt ¼ 1 when both H.264/AVC and
MPEG-2 reference frames are temporally coincident,
which means that motion vector rescaling is not required.
4.5. MV conversion from uni to bidirectional prediction

In general, a bidirectional MB prediction produces a
lower residue than unidirectional. Therefore conversion of
a unidirectional prediction into a bidirectional one should
be implemented in order to achieve better transcoding
efficiency. A method to convert source H.264/AVC uni-
directional motion vectors into MPEG-2 bidirectional ones
is devised as follows. Assuming a constant movement of
the MB area, the corresponding position in the opposite
temporal direction of the current reference picture is
estimated and a reverse motion vector is obtained by
flipping the source motion vector in both axis, i.e.,
MVinv

MPEG2 ¼ �MVMPEG2. Then by combining this reverse
motion vector with the original one, a bidirectional
motion vector MV can be obtained (Eq. (4)). This process
is shown in Fig. 8

MV ¼
MVMPEG2

MVinv
MPEG2

(
(4)

The candidate motion vector is selected from either
unidirectional or bidirectional predictions according to
the minimum residue criterion. This method can only be
applied in B slices where the prediction direction can be
forward, backward or both.

A similar method is used to deal with the special case
of unrestricted motion vectors. In H.264/AVC these type of
vectors point to blocks containing image areas outside the
picture boundaries. This is particularly useful in coding
sequences with camera panning, because it allows
efficient motion estimation of image boundary MBs, by
using a virtual reference located beyond the frame limits.
Since this is not supported in MPEG-2, such motion
vectors may introduce a significant burden in the mode
conversion process because almost full search is necessary
to find a new compliant motion vector. Fig. 9 illustrates
the method used to find an MPEG-2 compliant motion
vector from an H.264/AVC unrestricted one, by inverting
its temporal direction.

4.6. Refinement

As already pointed out, the motion vector accuracy
used in H.264/AVC is different from that used in MPEG-2.
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Therefore, accuracy conversion is also necessary to make
MPEG-2 compliant motion vectors. Since a simple round-
ing operation to convert the pixel accuracy introduces
suboptimal prediction, a refinement procedure through a
search around the candidate motion vector is performed
in order to fine tune the motion vector candidate. This
refinement improves the prediction quality, as it mini-
mises the inaccuracy of long distance motion vector
scaling.

In order to obtain a good tradeoff between quality gain
and computational complexity increase, several search
window sizes were tested for three different test
sequences, by measuring the objective quality increase,
as well as computational increase. The results of Figs. 10
and 11 show that using a search window larger than half
pixel does not yield significant quality gains, whereas the
computational complexity increases linearly with the
window size.
5. Intraconversion in the transform domain

In order to use transform domain intraconversion in
H.264/AVC to MPEG-2 transcoding, direct computation of
DCT coefficients from IT is necessary. This is quite different
from the type of transform domain conversion needed in
MPEG-2 to H.264/AVC transcoding, which was addressed
in [20], mainly because of intraprediction. While intra-
prediction can be avoided in DCT to IT conversion, i.e.,
MPEG-2 to H.264/AVC transcoding, it is unavoidable in IT
to DCT conversion because an H.264/AVC stream to be
transcoded is not supposed to be constrained in its
intraprediction modes. The H.264/AVC standard defines
a total of four intraprediction modes for 16� 16 blocks
and nine prediction modes for 4� 4 blocks. Since in IT to
DCT conversion, the final block size is always 8� 8, if one
considers the total number of permutations of the nine
possible prediction modes by groups of four blocks of size
4� 4 (i.e., 8� 8 blocks), then it results in 94

¼ 6561
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different possible cases. This means 6561 different types
of transform domain conversions to be independently
solved, which leads to an impracticable number of cases
and makes pixel domain conversion more affordable for
most of them.

In the case of the 16� 16 intraprediction modes
referred to as DC, vertical, horizontal and plane, the
prediction values are computed from pixels in adjacent
locations of the MB to be encoded as shown in Fig. A1
(Appendix A). Since the plane prediction mode use
different weights for each individual pixel, it is computa-
tionally more efficient to convert this prediction mode in
the pixel domain rather than in the transform domain. For
the other three modes a transform domain conversion
method was developed under the scope of this work,
aiming at reduction of computational complexity. The
proposed IT-to-DCT conversion method is based on the so-
called S matrix, where such matrix is multiplied by an
8� 8 block (X) comprised four blocks of size 4� 4
ðX1;X2;X3;X4Þ of IT coefficients, in order to produce the
corresponding 8� 8 block (Y) of DCT coefficients [21]. This
is given by the matrix operations Y ¼ S � X � ST and the
full method is described in Appendix A. For the reasons
mentioned above, intraconversion in the transform do-
main was not implemented in the transcoding architec-
ture, and the topic is compiled in Appendix A. Note that in
general, intraslices have a much lower temporal rate than
P and B ones and almost all of the video data to be
transcoded in a coded stream belongs to P and B slices.
Therefore, intraslices cannot contribute significantly to
reduce the overall computational complexity because
they only constitute a small fraction of any video signal.
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6. Experimental results

In this work, the fast transcoder implementation was
based on H.264/AVC JM13.2 and MPEG-2 v1.2 (MSSG)
MPEG Software Simulation Group. In order to evaluate the
performance with the proposed interconversion methods,
three sequences were used (Mobile, Stockholm and
Shields) at 720� 576 at 25 Hz, each with 250 frames.
These source sequences were encoded with H.264/AVC
using ‘‘Main Profile’’ at 5 Mbit/s (CBR), with RD optimisa-
tion enabled, a GOP (Group Of Pictures) size 12 following
an ‘‘IBPBP’’ structure and allowing five reference pictures.
The signal structure of the transcoded MPEG-2 stream was
chosen to be the same as the incoming H.264/AVC one.
Thus, the same parameters were used and a direct
correspondence between both of them was done, includ-
ing GOP structure, bit rate, etc. The experiments were
Table 3
Average luminance PSNR obtained from the proposed transcoder.

Mobile

PSNR (dB)

Stockholm

PSNR (dB)

Shields

PSNR (dB)

H.264/AVC 41.159 38.986 38.849

MPEG-2 36.571 36.975 34.605

Full_Rec 35.990 35.925 34.215

Fast_Trc 36.280 36.035 34.545
carried out to compare direct MPEG-2 encoding ‘‘MPEG-

2_MSSG’’, cascade decoding–encoding ‘‘Full Recoding’’ and
the proposed transcoding scheme ‘‘Fast Transcoding’’. The
PSNR and processing time were used as performance
evaluation parameters for comparison between the dif-
ferent transcoding schemes.

Table 3 shows the average luminance PSNR obtained
from direct coding (i.e., no transcoding) and transcoding
the three sequences using both the reference cascade
decoder–encoder transcoding scheme (Full_rec) and the
proposed fast transcoder (Fast_trc). The PSNR is obtained
by comparing the original sequence (i.e., before encoding
with H.264/AVC) with the transcoded one, (i.e., after
decoding with MPEG-2 decoder). These results show that
full recoding and fast transcoding achieve the same
practical objective quality and it is noteworthy that the
proposed fast transcoder provides slightly higher PSNR
than full-recoding. This results from the reuse of some
better coding modes in the fast transcoder which benefits
from the optimal mode decisions made by the initial
H.264/AVC encoder. Another reason for such a difference
is related with motion vector selection criterion, since the
reference transcoder uses the sum of absolute differences
(SAD) and fast transcoder uses the sum of squared
differences. Although SAD computation has smaller
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Fig. 12. Encoding time results. (a) Encoding time for P slices and (b)

encoding time for B slices.
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Table 4
Complexity reduction compared with the reference transcoder.

Bitrate Mbit/s Stockholm (%) Mobile (%)

3 63.38 58.19

4 61.69 58.86

5 61.78 58.67

6 61.95 58.98

7 62.14 58.19

8 61.72 58.67
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computational complexity than SSD, the latter is typically
a better residue selection criterion [22].

As mentioned above, the processing time of both
transcoding schemes was measured and compared for
evaluating the relative computational complexity perfor-
mance of the proposed fast transcoder. Figs. 12(a) and (b)
show that savings in processing time up to 60% are
achieved at lossless transcoding quality, when compared
with full recoding. The quality difference between both
transcoders is again very small, as shown in Figs. 13(a) and
(b). The periodicity observed in these figures is related
with the GOP size.

The overall quality of the transcoder was evaluated
with further experiments carried out at different bitrates.
The average PSNR results are shown in Figs. 14(a) and (b),
while the percentage of computational complexity reduc-
tion in comparison with the reference transcoder is shown
in Table 4 for the Stockholm and Mobile video sequences,
respectively. These results show a consistent transcoding
performance, with respect to both PSNR and complexity,
over a wide range of bitrates.

It was also found that by using motion vector
refinement within a 1� 1 search window, at the half-
pixel positions surrounding the integer motion vector
candidate, improves the picture quality up to 0.3 dB at the
expense of a maximum penalty of 5% in processing time.
Therefore such a refinement is used in the transcoder for
all motion vectors converted from the H.264/AVC input
video stream. If larger search windows are used, then the
computational complexity increases significantly, without
resulting in relevant quality gains.

In order to provide further evidence about the
efficiency of the proposed transcoder, different sequences
with 125 frames of CIF and QCIF resolutions and lower
bitrates were also transcoded. The coding conditions were
the same as described for the previous experiments,
except the bitrates of the source sequences which were set
to 2 Mbps and 512 kbps for CIF and QCIF, respectively.
Table 5 shows the average PSNR for the three sequences,
i.e., encoded with H.264/AVC, MPEG-2 and transcoded
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Table 5
PSNR for CIF and QCIF.

Bus PSNR (dB) Mobile PSNR (dB) Stefan PSNR (dB)

CIF

H.264/AVC 39.06 36.10 48.46

MPEG-2 37.79 34.79 40.91

Full_Rec 36.09 32.89 40.23

Fast_Trc 36.77 33.20 40.57

DPSNR þ0.68 þ0.31 þ0.34

QCIF

H.264/AVC 38.70 36.89 39.73

MPEG-2 37.64 34.59 38.47

Full_Rec 35.67 32.97 36.30

Fast_Trc 35.80 33.38 36.53

DPSNR þ0.13 þ0.41 þ0.23

Table 6
Sequence processing time in seconds.

Bus Mobile Stefan

CIF

Full_Rec 25.688 18.759 19.429

Fast_Trc 8.517 7.556 9.474

Reduction (%) 66.84 59.72 51.24

QCIF

Full_Rec 4.840 4.165 4.181

Fast_Trc 2.049 1.931 1.767

Reduction (%) 57.67 53.64 57.74
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using full recoding and the proposed fast transcoder.
Table 6 shows the processing time for the same three
sequences using full recoding and the proposed fast
transcoder. As these tables show, the results obtained for
CIF and QCIF sequences are consistent with the ones
obtained for higher resolution and bitrates. The PSNR
obtained at the same bit rate for full recoding is slightly
lower than for fast transcoding and much more relevant is
the reduction between 51.2% and 66.8% in the processing
time of the proposed transcoder, i.e., much lower
computational complexity.

In general, the transcoding process achieves different
computational complexity savings depending on the MB
coding modes, thus the overall performance may also vary
according to the sequence characteristics. However,
among the three sequences used in these simulations,
both the computational complexity gain and the video
quality remain similar, and these results are consistent
with other test sequences which were used to validate the
implementation of the fast transcoder. In regard to P
frames, the results obtained with the proposed transcoder
are similar to those obtained in [10] for both quality and
complexity, which also validates the transcoding methods
proposed in this paper.
7. Conclusion

In this paper a fast and efficient transcoder was
proposed, including novel methods for converting H.264/
AVC video into MPEG-2 format, namely conversion of MB
types resulting from unconstrained motion vectors and
conversion from P-type MBs into B-type ones. Transcoding
of interframe coding modes were thoroughly analysed, as
they constitute the majority of the coded data in a video
stream. The proposed mode conversion methods achieve a
computational complexity reduction of up to 60%, with
slightly better PSNR when compared with the reference
transcoder. It was shown that, for some intraprediction
modes, transcoding of intraslices in the transform domain
is computationally more efficient than its pixel domain
counterpart. However, since intraslices only account for a
small fraction of a coded video stream and there is a huge
number of possible combinations of intraprediction
modes, for most of them pixel domain conversion can be
more efficient than transform domain. Overall, the
proposed transcoding methods are envisaged for software
based implementations in devices with either limited
processing power or hardware platforms running several
simultaneous processes, such as home gateways and
media adaptation proxies.
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Appendix A. Conversion of 16� 16 intrapredicted blocks

Fig. A1 shows the predictions modes used in 16� 16
blocks, namely vertical, horizontal, DC and plane. Fast and
efficient transform domain conversion of the DC, vertical
and horizontal modes is described in the following.

As pointed out in Section 5, S is the conversion matrix
and ST is its transpose. The S matrix is defined as shown
below:

Y ¼ S � X � ST

S ¼

a 0 0 0 a 0 0 0

b c d e �b c �d e

0 f 0 g 0 �f 0 �g

h i j k �h i �j k

0 0 a 0 0 0 a 0

l m n o �l m �n o

0 �g 0 f 0 g 0 �f

p q r s �p q �r s

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(A.1)

and the elements a;b; . . . ; s are as follows [20]:

a ¼ 1:4142; b ¼ 1:2815; c ¼ 0:4618; d ¼ �0:1065

e ¼ 0:0585; f ¼ 1:1152; g ¼ 0:0793; h ¼ �0:45

i ¼ 0:8399; j ¼ 0:7259; k ¼ �0:0461; l ¼ 0:3007

m ¼ �0:4319; n ¼ 1:0864; o ¼ 0:5190; p ¼ �0:2549

q ¼ 0:2412; r ¼ �0:5308; s ¼ 0:9875

(A.2)
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The fast conversion algorithm is based on the symmetry
properties of the S matrix.

A.1. Vertical prediction mode

In the vertical mode, samples of each column are
predicted from the pixel values in the last row, at the same
column, of the MB above. In the pixel domain this is
equivalent to compute a prediction block through a matrix
operation. Since DCT is computed for 8� 8 blocks, it is
necessary to divide the MB into four blocks of 8� 8 and
then for each one of these, the corresponding intrapredic-
tion in the pixel domain may be obtained by applying the
following matrix operation to the 8� 8 block located in
the same vertical direction:

V1 V2 � � � V8

V1 V2 � � � V8

..

. ..
. . .

. ..
.

V1 V2 � � � V8

2
66664

3
77775 ¼

0 0 � � � 1

0 0 � � � 1

..

. ..
. . .

. ..
.

0 0 � � � 1

2
66664

3
77775
� � � � � �

� � � � � �

..

. ..
. . .

. ..
.

V1 V2 � � � V8

2
66664

3
77775

(A.3)

In order to perform the equivalent operation in the
transform domain, it is necessary to DCT transform each
member of (A.3), which results in

T

V1 V2 � � � V8

V1 V2 � � � V8

..

. ..
. . .

. ..
.

V1 V2 � � � V8

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA ¼ T

0 0 � � � 1

0 0 � � � 1

..

. ..
. . .

. ..
.

0 0 � � � 1

2
666664

3
777775

0
BBBBB@

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X

�T

� � � � � �

� � � � � �

..

. ..
. . .

. ..
.

V1 V2 � � � V8

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

¼ xð1�8Þ � Vð8�8Þ, (A.4)

where x is a vector resulting from the DCT of the auxiliary
matrix, and V represents the upper 8� 8 coefficient block.
Predictions in the vertical mode may be computed in the
frequency domain by using expression (A.4). Moreover,
the operation defined in (A.4) can be performed more
efficiently than a matrix product, due to the vector form of
x. In order to obtain the full MB of intrapredicted
coefficients, it is necessary to perform the same operation
H H

V

H

V

Vertical Horizontal

Fig. A1. Intraprediction
(A.4) to the up right block and, then copy the coefficients
from the upper blocks to the positions below.

A.2. Horizontal prediction mode

In the horizontal intraprediction mode, samples of
each row are predicted from the pixel values in the last
column of the MB on the left. By applying a similar
procedure to that described in (A.1), one can obtain this
intraprediction mode in the transform domain, by using
the following expression:

T

H1 H1 � � � H1

H2 H2 � � � H2

..

. ..
. . .

. ..
.

H8 H8 � � � H8

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA ¼ T

� � � � � H1

� � � � � H2

..

. ..
. . .

. ..
.

� � � � � H8

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

� T

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

1 1 � � � 1

2
666664

3
777775

0
BBBBB@

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X

¼ Hð8�8Þ � xT
ð8�1Þ. (A.5)

Like in the vertical prediction mode, the matrix multi-
plication, defined in Eq. (A.5), results in a product of a
V

H

V

DC Plane

modes 16� 16.
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matrix by a vector. In order to obtain the full MB of
intrapredicted coefficients for this mode, it is necessary to
perform the operation defined in (A.5) to the blocks
located at the up right and down right positions of the MB,
which is on the left of the MB to be encoded. Then the
coefficients from the blocks on the left must be copied to
the blocks on right positions.

A.3. DC prediction mode

In the DC prediction mode, the mean of the samples
located in the last row of the upper MB and in the last
column of the left MB need to be determined. It is possible
to compute the mean of the neighbouring pixel values in
Table A1
Number of operations required for intraprediction and transform

conversion.

Method Mul./shift Add Total

Vert. pred. 64 64 128

Horz. pred. 64 64 128

DC pred. 32 34 66

IT-to-DCT 352 352 704

FDCT 176 520 696

4Inverse IT 64 256 320

Fig. A3. PSNR for the sequences: (a) Carphone; (b) Fo
the transform domain by using the vertical and horizontal
intraprediction methods defined in Sections A.1 and A.2.

In the transform domain, this operation is carried out
using the DC coefficients extracted from Eqs. (A.4) and
(A.5). Using the notation depicted in Fig. A2, one can
obtain the predicted block by using the following method:
firstly, the sum of the DC coefficients shown in Fig. A2 is
computed in order to obtain the mean value of the
neighbouring pixels in the transform domain; secondly a
rounding operation is applied as defined in [1], which
results in the following expression:

T
X15

i¼0

ðHi þ ViÞ þ 16

 !
b5

 !
� 1ð8�8Þ

 !" #
DC

¼ ððDCH1 þ DCH2 þ DCV1 þ DCV2Þ þ 16Þb2, (A.6)

where 1ð8�8Þ is a matrix of ones. The above equation
formulates the DC prediction mode in the transform
domain. The resultant value must be copied to each DC
coefficient of the 8� 8 blocks represented in Fig. A2. Note
that in (A.6) the only nonzero matrix element is the DC
coefficient.

A.4. Computational complexity

The computational complexity of the proposed method
for intratranscoding in the transform domain is analysed
reman; (c) Mobile and (d) Akyio using QP ¼ 15.
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and compared with the pixel domain approach. In
Table A1, it is shown that the pixel domain approach
requires 696 operations to perform the forward DCT and
320 to perform four inverse integer transforms, resulting
in a total of 1016 operations [23,24]. However, transcoding
in the transform domain, only requires 704 operations for
IT-to-DCT conversion and 128 operations for either the
vertical or horizontal intraprediction (worst case), which
results in 832 operations. Therefore the computational
efficiency is improved about 19% in the worst case. In the
case of the DC intraprediction mode, the gain in
computational efficiency is increased at least to 25%.

A.5. Intratranscoding efficiency

The transcoding efficiency of the intraconversion
method described above was evaluated by using an
H.264/AVC stream encoded only with intraframes con-
strained to 16� 16 intraprediction modes. In this experi-
ment two transcoders were evaluated: the pixel domain
transcoder (Trans. Ref.) and the transform domain
transcoder (Trans. Mod.). In both transcoders a fixed
quantisation step size was used ðQP ¼ 15Þ. The peak
signal-to-noise ratio (PSNR) of the transcoded sequences
was computed using the same original sequence as
reference for comparison. Fig. A3 shows the PSNR for
both pixel and transform domain transcoding, using four
sequences: Carphone, Foreman, Mobile and Akyio. As
shown in Fig. A3, the PSNR degradation is small while a
significant reduction in computation complexity is
achieved by using the method described in Section 5.
Therefore fast transcoding of intracoded MBs is worth to
do for such prediction modes because the contribution for
the overall reduction of computational complexity is
significant at the expense of small degradation.
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